وطن

المدونة

التطبيقات

  • جيروسكوبات الألياف البصرية للملاحة بالقصور الذاتي
    جيروسكوبات الألياف البصرية للملاحة بالقصور الذاتي Jan 13, 2025
    النقاط الرئيسية المنتج: جيروسكوب الألياف البصرية GF70ZKالميزات الرئيسية:المكونات: يستخدم جيروسكوبات الألياف الضوئية لإجراء قياسات بالقصور الذاتي عالية الدقة.الوظيفة: توفر بدء تشغيل سريع وبيانات تنقل موثوقة لمختلف التطبيقات.التطبيقات: مناسبة لأنظمة الملاحة بالقصور الذاتي، واستقرار المنصة، وأنظمة تحديد المواقع في الفضاء الجوي والمركبات ذاتية القيادة.الأداء: ثبات انحياز صفري بين 0.01 و0.02، مصمم لتلبية احتياجات الدقة ونطاق القياس.الخلاصة: يجمع جهاز GF70ZK بين الحجم الصغير والاستهلاك المنخفض للطاقة، مما يجعله خيارًا متعدد الاستخدامات لمهام التنقل الصعبة عبر العديد من الصناعات.1. ما هو الملاحة بالقصور الذاتيلفهم ما هو التنقل بالقصور الذاتي، نحتاج أولاً إلى تقسيم العبارة إلى جزأين، أي الملاحة + القصور الذاتي.الملاحة، بعبارات بسيطة، تحل مشكلة الانتقال من مكان إلى آخر، مع الإشارة إلى الاتجاه، وعادة ما تكون البوصلة.يشير القصور الذاتي، المشتق في الأصل من ميكانيكا نيوتن، إلى خاصية الجسم الذي يحافظ على حالة حركته. لديها وظيفة تسجيل معلومات حالة الحركة للكائن.يتم استخدام مثال بسيط لتوضيح الملاحة بالقصور الذاتي. طفل وصديق يلعبان لعبة عند مدخل غرفة مغطاة بالبلاط، ويمشيان على البلاط إلى الجانب الآخر وفق قواعد معينة. واحدة للأمام، وثلاثة لليسار، وخمسة للأمام، واثنتان لليمين... كل خطوة من خطواته بطول بلاطة أرضية، ويمكن للأشخاص خارج الغرفة الحصول على مسار حركته الكامل عن طريق رسم الطول والمسار المقابلين على الورقة. لا يحتاج لرؤية الغرفة لمعرفة وضعية الطفل وسرعته وما إلى ذلك.المبدأ الأساسي للملاحة بالقصور الذاتي وبعض أنواع الملاحة الأخرى يشبه إلى حد كبير هذا: تعرف على موقعك الأولي، واتجاهك الأولي (الموقف)، واتجاه واتجاه الحركة في كل لحظة، وادفع للأمام قليلاً. قم بإضافة هذه العناصر معًا (المتوافقة مع عملية التكامل الرياضي)، ويمكنك فقط الحصول على اتجاهك وموقعك ومعلومات أخرى.إذن كيف يمكن الحصول على الاتجاه (الموقف) الحالي ومعلومات الموقع الخاصة بالجسم المتحرك؟ تحتاج إلى استخدام الكثير من أجهزة الاستشعار، في الملاحة بالقصور الذاتي يتم استخدام أدوات القصور الذاتي: مقياس التسارع + الجيروسكوب.يستخدم الملاحة بالقصور الذاتي الجيروسكوب ومقياس التسارع لقياس السرعة الزاوية والتسارع للحامل في الإطار المرجعي بالقصور الذاتي، ويدمج ويحسب الوقت للحصول على السرعة والموضع النسبي، ويحوله إلى نظام إحداثيات الملاحة، بحيث يكون تيار الناقل يمكن الحصول على الموقف من خلال الجمع بين معلومات الموقف الأولي.الملاحة بالقصور الذاتي هي نظام ملاحة داخلي مغلق الحلقة، ولا يوجد إدخال بيانات خارجي لتصحيح الخطأ أثناء حركة الناقل. لذلك، لا يمكن استخدام نظام ملاحة واحد بالقصور الذاتي إلا لفترات ملاحية قصيرة. بالنسبة للنظام الذي يعمل لفترة طويلة، من الضروري تصحيح الخطأ الداخلي المتراكم بشكل دوري عن طريق الملاحة عبر الأقمار الصناعية.2. الجيروسكوبات في الملاحة بالقصور الذاتيتُستخدم تكنولوجيا الملاحة بالقصور الذاتي على نطاق واسع في مجال الطيران والأقمار الصناعية للملاحة والطائرات بدون طيار وغيرها من المجالات بسبب إخفائها العالي وقدرتها المستقلة الكاملة على الحصول على معلومات الحركة. خاصة في مجالات الطائرات بدون طيار الصغيرة والقيادة الذاتية، يمكن أن توفر تقنية الملاحة بالقصور الذاتي معلومات دقيقة عن الاتجاه والسرعة، ويمكن أن تلعب دورًا لا غنى عنه في الظروف المعقدة أو عندما تفشل إشارات الملاحة الخارجية المساعدة الأخرى في لعب مزايا الملاحة المستقلة في البيئة. لتحقيق موقف موثوق وقياس الموقف. باعتباره عنصرًا مهمًا في نظام الملاحة بالقصور الذاتي، يلعب جيروسكوب الألياف الضوئية دورًا حاسمًا في قدرته على الملاحة. في الوقت الحاضر، توجد جيروسكوبات الألياف الضوئية وجيروسكوبات MEMS بشكل أساسي في السوق. على الرغم من أن دقة جيروسكوب الألياف الضوئية عالية، إلا أن نظامه بأكمله يتكون من قارنات،المغير، حلقة الألياف الضوئية وغيرها من المكونات المنفصلة، مما أدى إلى حجم كبير، وارتفاع التكلفة، في الطائرات بدون طيار الصغيرة، بدون طيار وغيرها من المجالات لا يمكن أن تلبي متطلبات التصغير والتكلفة المنخفضة، والتطبيق محدود إلى حد كبير. على الرغم من أن جيروسكوب MEMS يمكنه تحقيق التصغير، إلا أن دقته منخفضة. بالإضافة إلى ذلك، فهي تحتوي على أجزاء متحركة، ومقاومتها ضعيفة للصدمات والاهتزازات، ومن الصعب تطبيقها في البيئات القاسية.3 ملخصتم تصميم جيروسكوب الألياف الضوئية من شركة Micro-Magic Inc GF70ZK خصيصًا وفقًا لمفهوم جيروسكوبات الألياف الضوئية التقليدية، بحجم صغير يبلغ 70*70*32 مم؛ خفيفة الوزن، أقل من أو تساوي 250 جرام؛ انخفاض استهلاك الطاقة، أقل من أو يساوي 4W؛ ابدأ بسرعة، وقت البدء هو 5 ثوانٍ فقط؛ جيروسكوب الألياف الضوئية سهل التشغيل وسهل الاستخدام، ويستخدم على نطاق واسع في INS وIMU ونظام تحديد المواقع ونظام تحديد الشمال واستقرار المنصة وغيرها من المجالات.يتراوح استقرار التحيز الصفري لـ GF80 بين 0.01 و0.02. أكبر فرق بين هذين جيروسكوب الألياف الضوئية هو أن نطاق القياس مختلف، بالطبع، يمكن استخدام جيروسكوب الألياف الضوئية الخاص بنا في الملاحة بالقصور الذاتي، ويمكنك الاختيار التفصيلي وفقًا لقيمة الدقة ونطاق القياس، فنحن نرحب بك استشرنا في أي وقت واحصل على المزيد من البيانات الفنية.GF70ZKأجهزة استشعار جيروسكوب الألياف البصرية نظام الملاحة بالقصور الذاتي للملاحة الشمالية / النظام المرجعي للسمت جي-F80أجهزة استشعار الدوران المصغرة المصنوعة من الألياف الضوئية مقاس 80 مم 
  • تأثير بيئة الضغط المنخفض على مقياس التسارع المرن الكوارتز
    تأثير بيئة الضغط المنخفض على مقياس التسارع المرن الكوارتز Jan 10, 2025
    النقاط الرئيسيةالمنتج: مقياس تسارع الكوارتزالميزات الرئيسية:المكونات: يستخدم تقنية انثناء الكوارتز للحصول على حساسية عالية وضجيج منخفض في قياس التسارع.الوظيفة: مناسبة لقياسات التسارع الثابتة والديناميكية، مع الحد الأدنى من التأثير الناتج عن بيئات الضغط المنخفض.التطبيقات: مثالية لمراقبة الاهتزازات الدقيقة في مدارات المركبات الفضائية ويمكن تطبيقها في أنظمة الملاحة بالقصور الذاتي.تحليل الأداء: يُظهر تغيرات طفيفة في معامل القياس (أقل من 0.1%) في ظروف الفراغ، مما يضمن الدقة والموثوقية.الاستنتاج: يوفر أداءً قويًا للتطبيقات المدارية طويلة المدى، مما يجعله مناسبًا لمتطلبات الطيران عالية الدقة.يتميز مقياس تسارع انثناء الكوارتز بخصائص الحساسية العالية والضوضاء المنخفضة، مما يجعله مناسبًا لقياس كل من التسارع الثابت والديناميكي. ويمكن استخدامه كمستشعر حساس للتسارع لمراقبة بيئات الاهتزازات الدقيقة في مدارات المركبات الفضائية. تقدم هذه المقالة تأثير بيئة الضغط المنخفض على مقياس التسارع المرن الكوارتز.يتعرض الغشاء الحساس لمقياس تسارع الكوارتز لتأثيرات تخميد الغشاء عند الحركة في بيئة الهواء، مما قد يتسبب في حدوث تغييرات في أداء المستشعر (عامل القياس والضوضاء) في البيئات منخفضة الضغط. قد يؤثر هذا على دقة ودقة قياس تسارع الاهتزازات الدقيقة في المدار. ولذلك، فمن الضروري تحليل هذا التأثير وتقديم استنتاج تحليل الجدوى للاستخدام طويل المدى لمقاييس التسارع المرنة الكوارتز في البيئات عالية الفراغ.الشكل 1: مقاييس تسارع الكوارتز في مدارات المركبات الفضائية1. تحليل التخميد في بيئات الضغط المنخفضكلما طالت مدة عمل مقياس تسارع انثناء الكوارتز في المدار، زاد تسرب الهواء داخل العبوة، مما أدى إلى انخفاض ضغط الهواء حتى يصل إلى التوازن مع بيئة الفراغ الفضائي. سوف يطول متوسط المسار الحر لجزيئات الهواء بشكل مستمر، ويقترب أو حتى يتجاوز 30 ميكرومتر، وسوف تنتقل حالة تدفق الهواء تدريجيًا من التدفق اللزج إلى التدفق الجزيئي اللزج. عندما ينخفض الضغط إلى أقل من 102Pa، فإنه يدخل في حالة التدفق الجزيئي. يصبح تخميد الهواء أصغر فأصغر، وفي حالة التدفق الجزيئي، يكون تخميد الهواء صفرًا تقريبًا، ولم يتبق سوى التخميد الكهرومغناطيسي لحجاب حاجز مقياس التسارع المرن الكوارتز.بالنسبة لمقاييس تسارع انثناء الكوارتز التي تحتاج إلى العمل لفترة طويلة في بيئات منخفضة الضغط أو مفرغة في الفضاء، إذا كان هناك تسرب كبير للغاز خلال عمر المهمة المطلوب، فإن معامل تخميد الغشاء سينخفض بشكل كبير. سيؤدي هذا إلى تغيير خصائص مقياس التسارع، مما يجعل الاهتزازات الحرة المتفرقة غير فعالة في التوهين. وبالتالي، قد يتغير عامل القياس ومستوى الضوضاء الخاص بالمستشعر، مما قد يؤثر على دقة القياس وإحكامه. لذلك، من الضروري إجراء اختبارات جدوى على أداء مقاييس التسارع المرنة الكوارتز في بيئات الضغط المنخفض، ومقارنة نتائج الاختبار لتقييم مدى تأثير بيئات الضغط المنخفض على دقة قياس مقاييس التسارع المرنة الكوارتز.2. تأثير بيئات الضغط المنخفض على عامل مقياس تسارع انثناء الكوارتزاستنادًا إلى تحليل مبادئ العمل وبيئات التطبيق لمنتجات مقياس التسارع المرن الكوارتز، من المعروف أن المنتج مغلف بضغط جوي واحد، وبيئة التطبيق عبارة عن بيئة فراغية منخفضة المدار الأرضي (درجة الفراغ حوالي 10-5 إلى 10 -6Pa) على مسافة 500 كيلومتر من الأرض. تستخدم مقاييس التسارع المرنة الكوارتز عادةً تقنية الختم باستخدام راتنجات الإيبوكسي، مع معدل تسرب مضمون عمومًا ليكون 1.0×10-4Pa·L/s. في بيئة مفرغة، سوف يتسرب الهواء الداخلي ببطء، مع انخفاض الضغط إلى 0.1 ضغط جوي (التدفق الجزيئي اللزج) بعد 30 يومًا، وينخفض إلى 10-5 باسكال (التدفق الجزيئي) بعد 330 يومًا.يتجلى تأثير تخميد الهواء على مقاييس تسارع انثناء الكوارتز بشكل رئيسي في جانبين: التأثير على عامل القياس والتأثير على الضوضاء. وفقًا لتحليل التصميم، فإن تأثير تخميد الهواء على عامل المقياس يبلغ حوالي 0.0004 (عندما ينخفض الضغط إلى الفراغ، لا يوجد تخميد هوائي). عملية الحساب والتحليل هي كما يلي:يستخدم مقياس تسارع انثناء الكوارتز طريقة إمالة الجاذبية للمعايرة الثابتة. في مجموعة بندول مقياس التسارع، في بيئة بها هواء، تكون القوة العمودية المؤثرة على مجموعة البندول هي: mg0، وقوة الطفو fb هي: ρVg0. القوة الكهرومغناطيسية المؤثرة على البندول تساوي الفرق بين القوة التي يتأثر بها بسبب الجاذبية وقوة الطفو، معبرًا عنها بالمعادلة التالية:و=mg0-ρVg0أين:m هي كتلة البندول، m=8.12×10−4 كجم.ρ هي كثافة الهواء الجاف، ρ=1.293 كجم/م3.V هو حجم الجزء المتحرك من مجموعة البندول، V = 280 مم مكعب.g0 هو تسارع الجاذبية، g0=9.80665 م/ث².النسبة المئوية لقوة الطفو إلى قوة الجاذبية المؤثرة على مجموعة البندول نفسها هي:ρVg0/mg0=ρV/m≈0.044%في بيئة مفرغة، عندما تكون كثافة الهواء صفرًا تقريبًا بسبب تسرب الغاز مما يتسبب في توازن الضغط داخل الجهاز وخارجه، يكون التغير في عامل القياس لمقياس تسارع الكوارتز المرن 0.044%.3.الخلاصة:يمكن أن تؤثر بيئات الضغط المنخفض على عامل القياس والضوضاء الخاصة بمقياس التسارع المرن الكوارتز. ومن خلال الحساب والتحليل تبين أن التأثير الأقصى لبيئة الفراغ على عامل القياس لا يزيد عن 0.044%. يشير التحليل النظري إلى أن تأثير بيئات الضغط المنخفض على عامل قياس المستشعر أقل من 0.1%، مع تأثير ضئيل على دقة القياس، وهو ما يمكن إهماله. يوضح هذا أن البيئات ذات الضغط المنخفض أو الفراغ لها تأثيرات قليلة على عامل القياس والضوضاء لمقياس تسارع انثناء الكوارتز، مما يجعله مناسبًا للتطبيقات المدارية طويلة المدى.تجدر الإشارة إلى أن مقاييس التسارع المرنة المصنوعة من الكوارتز من سلسلة AC7 مصممة خصيصًا لتطبيقات الفضاء الجوي. من بينها، يتمتع AC7 بأعلى دقة، مع قابلية تكرار متحيزة صفر ≥20μg، وعامل قياس 1.2mA/g، وقابلية تكرار عامل القياس ≥20μg. إنها مناسبة تمامًا لمراقبة بيئات الاهتزازات الدقيقة للمركبات الفضائية في المدار. بالإضافة إلى ذلك، يمكن تطبيقه على أنظمة الملاحة بالقصور الذاتي وأنظمة قياس الزاوية الثابتة بمتطلبات الدقة العالية. ايه سي-5انخفاض الانحراف خطأ التسارع الكوارتز الاهتزاز الاستشعار عن Imu Ins  
  • مقارنة بين المواصفات الفنية للملاحة الصف MEMS جيروسكوب
    مقارنة بين المواصفات الفنية للملاحة الصف MEMS جيروسكوب Jan 10, 2025
    النقاط الرئيسيةالمنتج: جيروسكوب MEMS من فئة الملاحةالميزات الرئيسية:المكونات: جيروسكوب MEMS لقياس السرعة الزاوية بدقة.الوظيفة: توفر بيانات ملاحة عالية الدقة مع انحراف منخفض، ومناسبة للملاحة المستقرة وطويلة الأمد.التطبيقات: مثالية للطيران وتوجيه الصواريخ التكتيكية والملاحة البحرية والروبوتات الصناعية.الأداء: يتميز بعدم الاستقرار المنخفض والانجراف العشوائي، مما يوفر أداءً موثوقًا به بمرور الوقت.المقارنة: تلبي الطرازات المختلفة (MG-101، MG-401، MG-501) احتياجات الدقة المختلفة، حيث توفر MG-101 أعلى دقة.جيروسكوب MEMS هو نوع من أجهزة الاستشعار بالقصور الذاتي لقياس السرعة الزاوية أو الإزاحة الزاوية. ولديها آفاق تطبيق واسعة في قطع الأشجار، وتوجيه الأسلحة، والفضاء، والتعدين، والمسح ورسم الخرائط، والروبوتات الصناعية، والإلكترونيات الاستهلاكية. نظرًا لاختلاف متطلبات الدقة في مختلف المجالات، تنقسم جيروسكوبات MEMS إلى ثلاثة مستويات في السوق: مستوى الملاحة، والمستوى التكتيكي، ومستوى المستهلك.ستقدم هذه الورقة جيروسكوب الملاحة MEMS بالتفصيل وستقارن معلماته. سيتم تفصيل ما يلي من خلال المؤشرات الفنية لجيروسكوب MEMS، وتحليل انجراف الجيروسكوب ومقارنة ثلاثة جيروسكوبات MEMS من فئة الملاحة.المواصفات الفنية لجيروسكوب MEMSجيروسكوب MEMS المثالي هو أن إخراج محوره الحساس يتناسب مع المعلمات الزاوية المدخلة (الزاوية، المعدل الزاوي) للمحور المقابل للحامل تحت أي ظرف من الظروف، وغير حساس للمعلمات الزاوية لمحوره المتقاطع، ولا هل هي حساسة لأي معلمات محورية غير زاوية (مثل تسارع الاهتزاز والتسارع الخطي). تظهر المؤشرات الفنية الرئيسية لجيروسكوب MEMS في الجدول 1.المؤشر الفنيوحدةمعنىنطاق القياس(°)/ثحساسة بشكل فعال لنطاق السرعة الزاوية المدخلاتصفر التحيز(°)/ساعةخرج الجيروسكوب عندما يكون معدل الإدخال في الجيروسكوب صفراً. نظرًا لاختلاف المخرجات، عادةً ما يتم استخدام معدل الإدخال المكافئ لتمثيل نفس نوع المنتج، وكلما كان الانحياز الصفري أصغر، كان ذلك أفضل؛ نماذج مختلفة من المنتجات، وليس أصغر التحيز الصفري، كلما كان ذلك أفضل.التكرار التحيز(°)/ح(1σ)تحت نفس الشروط وعلى فترات محددة (متعاقبة، يوميا، كل يومين...) درجة التوافق بين القيم الجزئية للقياسات المتكررة. يتم التعبير عنها بالانحراف المعياري لكل إزاحة مقاسة. الأصغر هو الأفضل لجميع الجيروسكوبات (قم بتقييم مدى سهولة التعويض عن الصفر)الانجراف صفر(°)/ثمعدل التغير الزمني لانحراف مخرج الجيروسكوب عن الخرج المثالي. يحتوي على مكونات عشوائية ومنهجية ويتم التعبير عنه من حيث الإزاحة الزاوية المدخلة المقابلة بالنسبة إلى الفضاء بالقصور الذاتي في وحدة الزمن.عامل الحجمV/(°)/s、mA/(°)/sنسبة التغير في المخرجات إلى التغير في المدخلات المراد قياسها.عرض النطاق التردديHzفي اختبار خصائص التردد للجيروسكوب، تم النص على تقليل نطاق التردد المقابل لسعة السعة المقاسة بمقدار 3 ديسيبل، ويمكن تحسين دقة الجيروسكوب عن طريق التضحية بعرض النطاق الترددي للجيروسكوب.الجدول 1: المؤشرات الفنية الرئيسية لجيروسكوب MEMSتحليل الانجراف الجيروسكوبإذا كان هناك عزم دوران تداخل في الجيروسكوب، فسوف ينحرف عمود الدوار عن السمت المرجعي المستقر الأصلي ويشكل خطأ. تسمى زاوية انحراف محور الدوار بالنسبة إلى سمت الفضاء بالقصور الذاتي (أو السمت المرجعي) في وحدة الزمن بمعدل الانجراف الجيروسكوبي. المؤشر الرئيسي لقياس دقة الجيروسكوب هو معدل الانجراف.ينقسم الانجراف الجيروسكوبي إلى فئتين: أحدهما منهجي، والقانون معروف، ويسبب انجرافًا منتظمًا، ويمكن تعويضه بالكمبيوتر؛ أما النوع الآخر فهو ناجم عن عوامل عشوائية، مما يسبب الانجراف العشوائي. يتم التعبير عن معدل الانجراف المنهجي بواسطة الإزاحة الزاوية لكل وحدة زمنية، ويتم التعبير عن معدل الانجراف العشوائي بواسطة القيمة الجذرية لمتوسط مربع الإزاحة الزاوية لكل وحدة زمنية أو الانحراف المعياري. النطاق التقريبي لمعدلات الانجراف العشوائي لأنواع مختلفة من الجيروسكوبات التي يمكن الوصول إليها في الوقت الحاضر موضح في الجدول 2.نوع الجيروسكوبمعدل الانجراف العشوائي/(°)·ح-1جيروسكوب محمل بالكرة10-1جيروسكوب ذو محمل دوار1-0.1جيروسكوب تعويم سائل0.01-0.001جيروسكوب تعويم الهواء0.01-0.001جيروسكوب تم ضبطه ديناميكيًا0.01-0.001جيروسكوب كهرباء0.01-0.0001جيروسكوب رنين نصف كروي0.1-0.01حلقة جيروسكوب الليزر0.01-0.001جيروسكوب الألياف الضوئية1-0.1الجدول 2: معدلات الانجراف العشوائي لأنواع مختلفة من الجيروسكوبات يظهر في الجدول 3 النطاق التقريبي لمعدل الانجراف العشوائي للجيروسكوب الذي تتطلبه التطبيقات المختلفة. المؤشر النموذجي لدقة تحديد المواقع لنظام الملاحة بالقصور الذاتي هو 1 ن ميل / ساعة (1 ن ميل = 1852 م)، الأمر الذي يتطلب أن يصل معدل الانجراف العشوائي للجيروسكوب إلى 0.01(°)/ساعة، وبالتالي فإن الجيروسكوب بمعدل انجراف عشوائي قدره 0.01(°)/ساعة يُسمى عادةً جيروسكوب الملاحة بالقصور الذاتي.طلبمتطلبات معدل الانجراف العشوائي الجيروسكوب/(°)·h-1معدل الجيروسكوب في نظام التحكم في الطيران150-10جيروسكوب عمودي في نظام التحكم في الطيران30-10جيروسكوب الاتجاه في نظام التحكم في الطيران10-1نظام التوجيه بالقصور الذاتي للصواريخ التكتيكية1-0.1البوصلة الجيروسكوبية البحرية، نظام وضع الاتجاه الجانبي للمدفعية، نظام الملاحة بالقصور الذاتي للمركبة الأرضية0.1-0.01أنظمة الملاحة بالقصور الذاتي للطائرات والسفن0.01-0.001الصاروخ الاستراتيجي، نظام التوجيه بالقصور الذاتي لصواريخ كروز0.01-0.0005الجدول 3: متطلبات معدل الانجراف العشوائي للجيروسكوب في التطبيقات المختلفة مقارنة بين ثلاثة جيروسكوبات MEMS للملاحةسلسلة MG من شركة Micro-Magic Inc عبارة عن جيروسكوب MEMS من فئة الملاحة يتمتع بمستوى عالٍ من الدقة لتلبية احتياجات المجالات المختلفة. يقارن الجدول التالي النطاق وعدم استقرار التحيز والمشي العشوائي الزاوي واستقرار التحيز وعامل القياس وعرض النطاق الترددي والضوضاء. إم جي-101إم جي-401إم جي-501النطاق الديناميكي (درجة/ثانية)±100±400±500عدم الاستقرار المتحيز (درجة / ساعة)0.10.52المشي العشوائي الزاوي (°/√h)0.0050.025 ~ 0.050.125-0.1استقرار التحيز (1σ 10 ثانية) (درجة / ساعة)0.10.52~5الجدول 4: جدول مقارنة المعلمات لثلاثة جيروسكوبات MEMS من فئة الملاحةآمل أنه من خلال هذه المقالة، يمكنك فهم المؤشرات الفنية لجيروسكوب MEMS للملاحة والعلاقة المقارنة بينهما. إذا كنت مهتمًا بمعرفة المزيد عن جيروسكوب MEMS، فيرجى مناقشة ذلك معنا. MG502ميمس جيروسكوب MG502  
  • تحليل حلقة التحكم في وضع محرك الجيروسكوب MEMS
    تحليل حلقة التحكم في وضع محرك الجيروسكوب MEMS Jan 10, 2025
    النقاط الرئيسيةالمنتج: نظام ملاحة بالقصور الذاتي (INS) يعتمد على IMUالميزات الرئيسية:المكونات: يستخدم مقاييس التسارع والجيروسكوبات MEMS لقياس التسارع والسرعة الزاوية في الوقت الحقيقي.الوظيفة: يدمج بيانات الموقف والموقف الأولية مع قياسات IMU لحساب الموقف والموقف في الوقت الحقيقي.التطبيقات: مثالية للملاحة الداخلية والفضاء والأنظمة المستقلة والروبوتات.التحديات: يعالج أخطاء المستشعر، والانحراف التراكمي، وتأثيرات البيئة الديناميكية من خلال طرق المعايرة والتصفية.الاستنتاج: يوفر تحديد المواقع بدقة في البيئات الصعبة، مع أداء قوي عند دمجه مع أنظمة تحديد المواقع المساعدة مثل نظام تحديد المواقع العالمي (GPS). يعتمد جيروسكوب MEMS على السرعة الزاوية الحساسة لقوة كوريوليس، وينقسم نظام التحكم الخاص به إلى حلقة التحكم في وضع القيادة وحلقة التحكم في وضع الكشف. فقط من خلال ضمان التتبع في الوقت الحقيقي لسعة اهتزاز وضع القيادة وتردد الرنين، يمكن لإزالة تشكيل قناة الكشف الحصول على معلومات دقيقة عن السرعة الزاوية. ستحلل هذه الورقة حلقة التحكم في وضع القيادة لـ MEMS gyro من جوانب عديدة.محرك نموذج حلقة التحكم مشروطيتم تحويل إزاحة الاهتزاز لوضع محرك جيروسكوب MEMS إلى تغيير في السعة من خلال هيكل الكشف عن مكثف المشط، ومن ثم يتم تحويل السعة إلى إشارة الجهد التي تميز إزاحة محرك الجيروسكوب من خلال دائرة الصمام الثنائي الحلقي. بعد ذلك، ستدخل الإشارة إلى فرعين على التوالي، إشارة واحدة من خلال وحدة التحكم التلقائي في الكسب (AGC) لتحقيق التحكم في السعة، وإشارة واحدة من خلال وحدة حلقة الطور المقفلة (PLL) لتحقيق التحكم في الطور. في وحدة AGC، يتم أولاً إزالة تشكيل سعة إشارة إزاحة محرك الأقراص عن طريق الضرب ومرشح الترددات المنخفضة، ثم يتم التحكم في السعة عند القيمة المرجعية المحددة من خلال رابط PI ويتم إخراج إشارة التحكم الخاصة بسعة محرك الأقراص. تكون الإشارة المرجعية المستخدمة لإزالة التشكيل المضاعفة في وحدة PLL متعامدة مع الإشارة المرجعية لإزالة التشكيل المستخدمة في وحدة AGC. بعد مرور الإشارة عبر وحدة PLL، يمكن تتبع تردد الرنين الدافع للجيروسكوب. إخراج الوحدة هو إشارة التحكم في مرحلة القيادة. يتم مضاعفة إشارتي التحكم لتوليد جهد محرك الجيروسكوب، والذي يتم تطبيقه على مشط القيادة وتحويله إلى قوة دافعة إلكتروستاتيكية لقيادة وضع محرك الجيروسكوب، وذلك لتشكيل حلقة تحكم مغلقة لوضع محرك الجيروسكوب. يوضح الشكل 1 حلقة التحكم في وضع القيادة لجيروسكوب MEMS.الشكل 1. رسم تخطيطي لهيكل التحكم في وضع الجيروسكوب MEMSمحرك وظيفة نقل مشروطوفقًا للمعادلة الديناميكية لوضع القيادة لجيروسكوب MEMS المهتز، يمكن الحصول على وظيفة النقل المستمر للمجال عن طريق تحويل لابلاس:حيث mx هي الكتلة المكافئة لوضع محرك الجيروسكوب، وωx=√kx/mx هو تردد الرنين لوضع القيادة، وQx = mxωx/cx هو عامل الجودة لوضع القيادة.رابط تحويل الإزاحة والسعةوفقًا لتحليل سعة الكشف لأسنان المشط، يكون رابط تحويل سعة الإزاحة خطيًا عند تجاهل تأثير الحافة، ويمكن التعبير عن كسب السعة التفاضلية المتغيرة مع الإزاحة على النحو التالي:حيث nx هو عدد الأمشاط النشطة المدفوعة بالوضع الجيروسكوبي، ε0 هو ثابت العزل الكهربائي الفراغي، hx هو سمك أمشاط اكتشاف القيادة، lx هو طول التداخل لأمشاط اكتشاف القيادة النشطة والثابتة في حالة الراحة، وdx هو المسافة بين الأسنان.وصلة تحويل السعة والجهددائرة تحويل الجهد والمكثف المستخدمة في هذه الورقة هي دائرة الصمام الثنائي الحلقي، ويظهر الرسم التخطيطي لها في الشكل 2.الشكل 2: رسم تخطيطي لدائرة الصمام الثنائي الدائريفي الشكل، C1 وC2 عبارة عن مكثفات كشف تفاضلي للجيروسكوب، وC3 وC4 عبارة عن مكثفات إزالة التشكيل، وVca عبارة عن سعات موجة مربعة. مبدأ العمل هو: عندما تكون الموجة المربعة في نصف دورة موجبة، يتم تشغيل الصمام الثنائي D2 وD4، ثم يقوم المكثف C1 بشحن C4 وC2 بشحن C3؛ عندما تكون الموجة المربعة في نصف فترة موجبة، يتم تشغيل الثنائيات D1 و D3، ثم يتم تفريغ المكثف C1 إلى C3 وC2 إلى C4. بهذه الطريقة، بعد عدة دورات موجة مربعة، سوف يستقر الجهد على المكثفات المنزوعة التشكيل C3 وC4. التعبير عن الجهد هو:بالنسبة لجيروسكوب السيليكون الميكروميكانيكي الذي تمت دراسته في هذا البحث، تكون سعته الثابتة في حدود عدة pF، ويكون تباين السعة أقل من 0.5pF، بينما تكون سعة إزالة التشكيل المستخدمة في الدائرة في حدود 100 pF، لذلك هناك CC0》∆C وC2》∆C2، ويتم الحصول على كسب تحويل جهد المكثف عن طريق تبسيط الصيغة:حيث Kpa هو عامل التضخيم للمضخم التفاضلي، وC0 هي سعة إزالة التشكيل، وC هي السعة الثابتة لسعة الكشف، وVca هي سعة الموجة الحاملة، وVD هو انخفاض الجهد في الصمام الثنائي.وصلة تحويل السعة والجهديعد التحكم في الطور جزءًا مهمًا من التحكم في محرك جيروسكوب MEMS. يمكن لتقنية الحلقة المقفلة الطور تتبع تغير تردد إشارة الإدخال في نطاق التردد الذي تم التقاطه وقفل تحول الطور. لذلك، تستخدم هذه الورقة تقنية الحلقة المقفلة الطور للدخول إلى التحكم في الطور للجيروسكوب، ويظهر الرسم التخطيطي لهيكلها الأساسي في الشكل 3.شكل. 3 رسم تخطيطي للهيكل الأساسي لـ PLLPLL هو نظام تنظيم تلقائي لمرحلة التغذية المرتدة السلبية، ويمكن تلخيص مبدأ عمله على النحو التالي: يتم إدخال إشارة الإدخال الخارجية ui(t) وإشارة التغذية المرتدة uo(t) من VCO إلى تمييز الطور في نفس الوقت أكمل مقارنة الطور بين الإشارتين، ويخرج طرف الخرج لتمييز الطور إشارة جهد خطأ ud(t) تعكس فرق الطور θe(t) للإشارتين؛ ستقوم الإشارة من خلال مرشح الحلقة بتصفية المكونات عالية التردد والضوضاء، والحصول على مذبذب التحكم في الجهد uc(t)، وسيقوم مذبذب التحكم في الجهد بضبط تردد إشارة الخرج وفقًا لجهد التحكم هذا، بحيث يقترب تدريجيًا إلى تردد إشارة الدخل وإشارة الخرج النهائية uo(t)، عندما يكون تردد ui(t) مساويًا لـ uo(t) أو قيمة مستقرة، تصل الحلقة إلى حالة القفل.التحكم التلقائي في الكسبالتحكم التلقائي في الكسب (AGC) هو نظام ردود فعل سلبية ذو حلقة مغلقة مع التحكم في السعة، والذي، جنبًا إلى جنب مع حلقة قفل الطور، يوفر اهتزازًا ثابتًا للسعة والطور لوضع محرك الجيروسكوب. يظهر مخطط هيكلها في الشكل 4.الشكل 4. مخطط كتلة هيكل التحكم التلقائي في الكسبيمكن تلخيص مبدأ العمل للتحكم التلقائي في الكسب على النحو التالي: يتم إدخال إشارة ui(t) مع معلومات إزاحة محرك الجيروسكوب إلى رابط اكتشاف السعة، ويتم استخراج إشارة سعة إزاحة المحرك عن طريق إزالة التشكيل المضاعف، ثم التردد العالي يتم تصفية المكون والضوضاء بواسطة مرشح الترددات المنخفضة؛ في هذا الوقت، تكون الإشارة عبارة عن إشارة جهد تيار مستمر نقية نسبيًا تميز إزاحة محرك الأقراص، ثم تتحكم في الإشارة عند القيمة المرجعية المحددة من خلال رابط PI، وتخرج الإشارة الكهربائية ua(t) التي تتحكم في سعة محرك الأقراص لإكمالها التحكم في السعة.خاتمةفي هذا البحث، تم تقديم حلقة التحكم في وضع القيادة لجيروسكوب MEMS، بما في ذلك النموذج، وتحويل سعة القفل، وتحويل السعة والجهد، وحلقة قفل الطور، والتحكم التلقائي في الكسب. باعتبارها شركة مصنعة لمستشعر الجيروسكوب MEMS، أجرت شركة Micro-Magic Inc بحثًا تفصيليًا حول الجيروسكوبات MEMS، وغالبًا ما قامت بنشر ومشاركة المعرفة ذات الصلة بجيروسكوب MEMS. للحصول على فهم أعمق لجيروسكوب MEMS، يمكنك الرجوع إلى معلمات MG-501 وMG1001.إذا كنت مهتمًا بمعرفة المزيد عن منتجات MEMS، فيرجى الاتصال بنا. MG502ميمس جيروسكوب MG502   
  • طريقة تحليل الأخطاء الساكنة للباحث عن الشمال بالقصور الذاتي
    طريقة تحليل الأخطاء الساكنة للباحث عن الشمال بالقصور الذاتي Jan 10, 2025
    النقاط الرئيسيةالمنتج: الباحث عن الشمال بالقصور الذاتيالميزات الرئيسية:المكونات: يستخدم جيروسكوب MEMS لقياس السرعة الزاوية وحساب اتجاه السمت، بمساعدة تعويض خطأ الموقف.الوظيفة: توفير قياس السمت في الوقت الحقيقي باستخدام بيانات دوران الأرض، مع تصحيحات لأخطاء الميل والالتفاف.التطبيقات: مثالية للملاحة في الطائرات والطائرات بدون طيار والمركبات، خاصة في المناطق التي لا تتمتع بتغطية GNSS موثوقة.تعويض الأخطاء: يتم تعويض أخطاء الموقف (الميل والتدحرج) وأخطاء التثبيت الجيروسكوبي لتحسين الدقة.الاستنتاج: يقدم الباحث الشمالي قياسات سمت دقيقة مع الحد الأدنى من الأخطاء، وهو مناسب للملاحة وتحديد الاتجاه في تطبيقات متنوعة.1. مبدأ عمل الباحث الشمالي بالقصور الذاتيمبدأ عمل الباحث عن الشمال بالقصور الذاتي هو قياس السرعة الزاوية لدوران الأرض باستخدام الجيروسكوب، ومن ثم حساب الزاوية بين الشمال والاتجاه المقاس. لنفترض أن خط عرض S عند موقع موجة حاملة في نصف الكرة الشمالي هو φ، وأن متجه السرعة الزاوية Ω لدوران الأرض عند تلك النقطة له مكون أفقي شمالي قدره Ωx0 ومركب تصاعدي رأسي قدره Ωz0، إذن هناكبافتراض أن الموجة الحاملة أفقية تمامًا وأن الزاوية بينها وبين الشمال الحقيقي هي H، فإن المكون على المحور الحساس لجيروسكوب الباحث عن الشمال، أي قيمة قياس الجيروسكوب، هو:ولأنه معروف، يمكن حساب زاوية السمت بهذه الطريقة، أي قيمة خرج الباحث الشمالي في ظل الحالة المثالية للحامل الأفقي المطلق وبدون خطأ في التثبيت. من الناحية العملية، سيؤثر خطأ زاوية موقف الناقل وخطأ تثبيت الجيروسكوب على قيمة قياس الجيروسكوب ويؤدي إلى انخفاض دقة القياس لمكتشف الشمال.2.تحليل خطأ زاوية موقف الناقلحدد نظام الإحداثيات الجغرافية المكانية O-XYZ: مركز كتلة الحامل هو O، ويتجه المحور X شمالًا على طول خط الطول المحلي، ويتجه المحور Y غربًا على طول خط العرض المحلي، ويكون المحور Z متعامدًا مع خط الطول المحلي. المستوى الأفقي المحلي للأعلى. الطائرات XOY وYOZ وXOZ متعامدة مع بعضها البعض. ، تقسيم المساحة إلى ثمانية أشكال سداسية.ولتسهيل التحليل، من المفترض أن مركز الجيروسكوب للباحث الشمالي يتزامن مع مركز كتلة الحامل. عندما لا يؤخذ خطأ التثبيت في الاعتبار، فإن محور قياس جيروسكوب مكتشف الشمال يتزامن مع خطوط الرأس والذيل للحامل. يقع متجه الوحدة OM على المحور الحساس للجيروسكوب، والذي يكون للأمام على طول خطوط الرأس والذيل للحامل، ويكون متجه الوحدة الآخر ON متعامدًا مع OM إلى اليسار. يتم تعريف زاوية خطأ موقف الناقل على النحو التالي: زاوية خطأ الملعب هي الزاوية بين OM وOXb (إسقاط OM على المستوى الأفقي)، ويتم رفع الجزء الأمامي من الناقل بشكل إيجابي؛ زاوية خطأ التدحرج هي الزاوية بين ON وOYb (خط التقاطع بين ملف تعريف الناقل والمستوى الأفقي فوق ON)، ويكون الجانب الأيسر من الحامل موجبًا عند الرفع. الزاوية بين OX و OXb هي زاوية السمت H. يمكن الحصول بسهولة على العلاقة الرأسية التالية: OYb⊥OXb ⊥OZ، OYb⊥OZ، OXb⊥ oz، أي أن المستويات XbOYb وXbOZ وYbOZ متعامدة مع بعضها البعض. يمكن لهذه المستويات الثلاثة أن تشكل نظام الإحداثيات الفضائية الحامل O-XbYbZ، كما هو موضح في الشكل 1، والذي يمكن فهمه على أنه يتكون من نظام الإحداثيات الفضائية الجغرافية O-XYZ الذي يدير زاوية السمت H في اتجاه عقارب الساعة.المكون الأفقي والمكون الرأسي للسرعة الزاوية لدوران الأرض عند النقطة التي تقع فيها الموجة الحاملة هما المتجهان OA وOB على التوالي، ثم تكون إحداثيات النقطة A والنقطة B في نظام الإحداثيات O-XbYbZ. يتم الحصول على إحداثيات M وإحداثيات N عن طريق الهندسة التحليلية الفضائية. نظرًا لأن النقاط الثلاث M وO وN كلها على المستوى الحامل، فيمكن الحصول على معادلة MON للمستوى وفقًا لتعبير طريقة النقطة للمستوى:قيمة الجيروسكوب المقاسة لباحث الشمال هي مجموع القيم المتوقعة لـ OA وOB على المحور الحساس OM، كما هو موضح في الصيغة:يتم تحويل هذه الصيغة إلى تعبير مثالي للقيمة المقاسة عندما θ = 0°. خطأ قياس الدوران:يمكن ملاحظة أن خطأ قيمة قياس الجيروسكوب في هذا الوقت يرتبط بزاوية خطأ الملعب وزاوية السمت H وخط العرض، ويتم إنشاء زاوية خطأ اللفة عن طريق دوران المستوى الحامل حول خطوط الرأس والذيل، أي المحور الحساس OM، وبالتالي فإن زاوية الخطأ ليس لها أي تأثير على القيمة المقاسة MOM على OM.3. الملخصسيكون هناك الكثير من مصادر الأخطاء في عملية الباحث عن الشمال، وفيما يتعلق بتعويض الأخطاء، تسعى شركة Micro-Magic Inc إلى اتباع تكنولوجيا أكثر نضجًا وأجهزة قصور ذاتي أكثر فعالية من حيث التكلفة. في مكتشف الشمال MEMS الجديد لحفر التعدين NF1000، تمت إضافة وظيفة تعويض الوضع، بالإضافة إلى مكتشف الشمال NF2000 الفعال من حيث التكلفة وأصغر مكتشف شمال MEMS ثلاثي المحاور في العالم NF3000، في انتظار فهمك. NF1000نظام الملاحة بالقصور الذاتي عالي الأداء الديناميكي MEMS North Seeker -
  • طريقة تحديد المواقع الأرضية مع وحدة قياس بالقصور الذاتي وكاميرا مثبتة بشكل ثابت
    طريقة تحديد المواقع الأرضية مع وحدة قياس بالقصور الذاتي وكاميرا مثبتة بشكل ثابت Jan 10, 2025
    النقاط الرئيسيةالمنتج: طريقة تحديد المواقع الأرضية باستخدام IMU والكاميرا الثابتةالميزات الرئيسية:المكونات: وحدة قياس بالقصور الذاتي (IMU) وكاميرا ثابتة، مثبتة بشكل آمن لتحديد المواقع بشكل مستقر.الوظيفة: تجمع بين قياس الموقف عالي الدقة من IMU مع تحديد الموقع البصري من الكاميرا لتحديد المواقع بدقة على الأرض.التطبيقات: مناسبة للطائرات بدون طيار، والروبوتات، والمركبات ذاتية القيادة.دمج البيانات: يدمج بيانات IMU مع صور الكاميرا لتحديد الإحداثيات الجغرافية الدقيقة.الاستنتاج: تعمل هذه الطريقة على تعزيز دقة تحديد المواقع وكفاءتها مع تبسيط المعايرة، مع إمكانية تطبيقها على نطاق واسع في مختلف المجالات التكنولوجية.يقدمطريقة لتحديد المواقع على الأرض يتم فيها تثبيت وحدة قياس القصور الذاتي (IMU) وكاميرا بشكل ثابت. فهو يجمع بين قياس الموقف عالي الدقة لـ IMU وإمكانيات تحديد المواقع المرئية للكاميرا لتحقيق تحديد موقع أرضي فعال ودقيق. وإليكم الخطوات التفصيلية للطريقة:أولاً، قم بتثبيت IMU والكاميرا بقوة لضمان بقاء الوضع النسبي بينهما دون تغيير. تعمل طريقة التثبيت هذه على التخلص من الخطوات الشاقة لمعايرة علاقة التثبيت بين الكاميرا ووحدة IMU بالطريقة التقليدية، وتبسيط عملية التشغيل.بعد ذلك، يتم استخدام IMU لقياس التسارع والسرعة الزاوية للحامل في الإطار المرجعي بالقصور الذاتي. تحتوي وحدة IMU على مستشعر تسارع وجيروسكوب يمكنه استشعار حالة حركة الحامل في الوقت الفعلي. يعد مستشعر التسارع مسؤولاً عن اكتشاف معدل التسارع الحالي، بينما يكتشف الجيروسكوب التغيرات في الاتجاه وزاوية الدوران وموقف ميل الحامل. توفر هذه البيانات معلومات أساسية لحساب الموقف وتحديد المواقع لاحقًا.وبعد ذلك، استنادًا إلى البيانات التي تم قياسها بواسطة IMU، يتم حساب معلومات موقف الموجة الحاملة في نظام إحداثيات الملاحة من خلال التشغيل المتكامل وخوارزمية حل الموقف. يتضمن ذلك زاوية الانعراج، وزاوية الميل، وزاوية اللف، وما إلى ذلك للحامل. نظرًا لتردد التحديث العالي لـ IMU، يمكن أن يصل تردد التشغيل إلى أكثر من 100 هرتز، لذلك يمكنه توفير بيانات الموقف عالية الدقة في الوقت الفعلي.وفي الوقت نفسه، تلتقط الكاميرا نقاط المعالم الأرضية أو معلومات المعالم وتولد بيانات الصورة. تحتوي بيانات الصورة هذه على معلومات مكانية غنية ويمكن استخدامها لمعالجة الدمج مع بيانات IMU.بعد ذلك، يتم دمج معلومات الموقف المقدمة من IMU مع بيانات الصورة الخاصة بالكاميرا. من خلال مطابقة النقاط المميزة في الصورة مع النقاط المعروفة في نظام الإحداثيات الجغرافية، بالإضافة إلى بيانات الموقف الخاصة بـ IMU، يمكن حساب الموقع الدقيق للكاميرا في نظام الإحداثيات الجغرافية.وأخيرا، يتم استخدام مصفوفة الإسقاط لتقاطع تقاطع الخط الطبيعي للحصول على الموقع المكاني للهدف. تجمع هذه الطريقة بين بيانات الموقف الخاصة بـ IMU وبيانات الصورة الخاصة بالكاميرا لتحقيق تقدير دقيق للموقع المكاني المستهدف عن طريق حساب مصفوفة الإسقاط ونقطة التقاطع.من خلال هذه الطريقة، يمكن تحقيق تحديد المواقع على الأرض بدقة عالية وكفاءة عالية. يعمل التثبيت الثابت لوحدة IMU والكاميرا على تبسيط عملية التشغيل وتقليل أخطاء المعايرة. وفي الوقت نفسه، يعمل الجمع بين تردد التحديث العالي لـ IMU وقدرة تحديد المواقع المرئية للكاميرا على تحسين دقة تحديد المواقع والأداء في الوقت الفعلي. تتمتع هذه الطريقة بآفاق تطبيقية واسعة في مجالات مثل الطائرات بدون طيار والروبوتات والقيادة الذاتية.تجدر الإشارة إلى أنه على الرغم من أن هذه الطريقة تتمتع بالعديد من المزايا، إلا أنها قد تظل تتأثر ببعض العوامل في التطبيقات العملية، مثل الضوضاء البيئية والتداخل الديناميكي وما إلى ذلك. لذلك، في التطبيقات العملية، يجب إجراء ضبط المعلمة وتحسينها وفقًا لظروف محددة لتحسين استقرار وموثوقية تحديد المواقع.تلخيصتوضح المقالة أعلاه طريقة تحديد المواقع على الأرض عندما يتم تثبيت IMU والكاميرا بشكل ثابت. ويصف بإيجاز قياس الموقف عالي الدقة الخاص بـ IMU وإمكانيات تحديد المواقع المرئية للكاميرا، ويمكنه تحقيق تحديد المواقع على الأرض بكفاءة ودقة. تتميز وحدة MEMS IMU التي طورتها شركة Micro-Magic Inc بشكل مستقل بدقة عالية نسبيًا، مثل U3000 وU7000، وهي أكثر دقة وهي منتجات من فئة الملاحة. يمكنه تحديد الموقع والتوجيه بدقة. إذا كنت تريد معرفة المزيد عن IMU، يرجى الاتصال بالفنيين المحترفين لدينا في أقرب وقت ممكن.U7000Rs232/485 جيروسكوب Imu For - منصة تثبيت هوائي الرادار/الأشعة تحت الحمراء U3000مستشعر IMU MEMS دقة IMU3000 1 مخرج رقمي RS232 RS485 TTL اختياري Modbus 
  • طريقة اختبار الحلقة المغلقة لمعامل التخميد لمقياس التسارع Q-Flex
    طريقة اختبار الحلقة المغلقة لمعامل التخميد لمقياس التسارع Q-Flex Jan 10, 2025
    النقاط الرئيسيةالمنتج: مقياس تسارع كوارتز Q-Flexالميزات الرئيسية:المكونات: تصميم بندول كوارتز عالي النقاء مع نظام تغذية مرتدة بحلقة مغلقة لقياسات تسارع دقيقة.الوظيفة: توفر بيانات تسارع دقيقة ومستقرة، مع ضوضاء منخفضة واستقرار جيد على المدى الطويل، وفعالة بشكل خاص في تشغيل الحلقة المغلقة.التطبيقات: مثالي للملاحة الجوية والتحكم في المواقف، والاستكشاف الجيولوجي، والبيئات الصناعية التي تتطلب قياسات دقيقة بالقصور الذاتي.طريقة القياس: قياس استجابة التردد ذات الحلقة المغلقة، مما يضمن تقدير موثوق لمعلمة التخميد والأداء الدقيق.الاستنتاج: يوفر مقياس التسارع Q-Flex دقة وثباتًا عاليين، مما يجعله مفيدًا في تطبيقات الملاحة والتحكم والقياس الصناعي.مقياس التسارع Q-Flex هو نوع من أجهزة قياس القصور الذاتي، والذي يستخدم بندول الكوارتز لقياس تسارع الجسم من خلال خاصية الانحراف عن موضع التوازن بواسطة قوة القصور الذاتي. بفضل معامل درجة الحرارة المنخفضة لمادة الكوارتز عالية النقاء والخصائص الهيكلية المستقرة، يتمتع مقياس التسارع Q-Flex بدقة قياس عالية، وضوضاء قياس منخفضة، واستقرار جيد على المدى الطويل، ويستخدم على نطاق واسع في التحكم في الموقف والملاحة وتوجيه الطائرات، وكذلك الاستكشاف الجيولوجي والبيئات الصناعية الأخرى.1.طريقة الكشف عن مقياس التسارع Q-Flexعندما يكون النظام مفتوح الحلقة، لأن النظام لا يستطيع إنتاج لحظة تغذية مرتدة، تتعرض مجموعة البندول إلى لحظة قصور ذاتي ضعيفة أو لحظة نشطة لمحول عزم الدوران، فإن بندول الكوارتز يلمس بسهولة الحديد المنير والظاهرة المشبعة، مما يجعله من الصعب جدًا اختبار معلمات التخميد في ظل الحلقة المفتوحة، لذلك، يتم قياس معلمات التخميد في ظل حالة الحلقة المغلقة للنظام.تعكس خصائص تردد الحلقة المغلقة لنظام التحكم الاختلاف في سعة ومرحلة إشارة الخرج مع تردد إشارة الدخل. تكون استجابة التردد للنظام المستقر على نفس تردد إشارة الدخل، وتكون سعتها ومرحلتها من وظائف التردد، لذلك يمكن تطبيق منحنى خاصية السعة والطور لاستجابة التردد لتحديد النموذج الرياضي للنظام . من أجل الحصول على معلمات التخميد الفعلية لمقياس التسارع، يتم استخدام طريقة قياس استجابة التردد ذات الحلقة المغلقة.في طريقة قياس استجابة التردد ذات الحلقة المغلقة، يتم تثبيت مقياس التسارع على طاولة الاهتزاز الأفقية في حالة "البندول"، بحيث يتم محاذاة اتجاه مدخلات التسارع لجدول الاهتزاز مع المحور الحساس لمقياس التسارع ويتم وضع مقياس التسارع أفقياً في حالة "البندول"، والتي يمكن أن تقضي على عدم تناسق قوة الجاذبية على تسارع المدخلات. إن الوضع الأفقي لمقياس التسارع في "حالة البندول" يلغي تأثير الجاذبية على عدم تناسق تسارع الإدخال.الشكل 1: سعة الحلقة المغلقة منحنى التردد المميز لـ qfasمن خلال التحكم في الهزاز الأفقي، يتم تطبيق إشارة تسارع جيبية قدرها 6 جم (g هو تسارع الجاذبية، 1 جم ≈ 9.8 م/ث2)، مع تردد متزايد تدريجيًا من 0 إلى 600 هرتز، على مقياس التسارع Q-Flex، والتي يمكن أن تعكس توهين السعة وتأخير الطور لإخراج مقياس التسارع ضمن نطاق التصميم وعرض النطاق الترددي لمقياس التسارع. سينتج مقياس التسارع الناتج المقابل تحت تأثير طاولة الاهتزاز، ومسجل معدل أخذ العينات المرتفع المتصل بجانبي مقاومة أخذ العينات، وتسجيل مخرج مقياس التسارع، ورسم منحنى خاصية تردد السعة الموضح في الشكل 1.في نطاق تمرير منحنى خاصية تردد السعة لمقياس التسارع، يحافظ مقياس تسارع الانحناء الكوارتز على قدرة متابعة تسارع جيدة، مع زيادة تردد تسارع الإدخال، ذروة رنين النظام عند 565 هرتز، ذروة الرنين هي Mr=32dB، تردد القطع يبلغ تردد النظام 582 هرتز، وبدأت سعة النظام عند التردد في إنتاج أكثر من 3 ديسيبل من التوهين. نظرًا لأن القصور الذاتي الدوراني والصلابة وبقية معلمات حلقة التحكم المؤازرة لمقياس التسارع Q-Flex معروفة، يتم استخدام خصائص تردد السعة للنظام لحل المعلمة غير المعروفة δ. يتم إعطاء وظيفة نقل الحلقة المغلقة للنظام على النحو التاليالمعادلة 1تقوم طريقة المربعات الصغرى بتقدير معلمات النموذج بناءً على البيانات الفعلية المرصودة، ويتم الحصول على مجموعة من بيانات سعة التردد عن طريق توليد مدخلات تسارع خارجية من خلال شاكر أفقي يتم قياسه بواسطة سجل القلم، كما هو موضح في الجدول 1.علامة التبويب 1: بيانات أخذ عينات سعة التردد الخاصة بـ qfasإن وظيفة استجابة السعة والتردد لنظام مقياس تسارع الانحناء الكوارتز مع المعلمات المعروفة هي الوظيفة الموضوعية، ويتم تحديد المجموع المتبقي للمربعات ذات المعلمات غير المعروفة على النحو التاليالمعادلة 2حيث n هو عدد نقاط المعالم المحددة. باستخدام المعادلة أعلاه، يتم تحديد قيمة مناسبة لـ δ بحيث يكون D(δ) هو الحد الأدنى للقيمة. يتم الحصول على معامل التخميد المطلوب كـ δ=7.54×10-4N·m·s/rad باستخدام تركيبات المربعات الصغرى.تم إنشاء نموذج محاكاة الحلقة المغلقة للنظام، وتم استبدال معامل التخميد في نموذج رأس مقياس تسارع الانحناء الكوارتزي وتمت محاكاة النظام، وتم رسم المنحنى المميز لسعة التردد للنظام كما هو موضح في الشكل 2، وهو أقرب إلى المنحنى المقاس.الشكل 2: السعة الواقعية: خاصية التردد ومخرجات محاكاة المعلماتلقد قامت بعض الدراسات بحل توزيع التخميد للفيلم الكهرضغطي على سطح البندول بطريقة فرق المجال الزمني المحدود، ومعامل التخميد للفيلم الكهرضغطي للبندول هو 1.69×10-4N·m·s/rad، وهو ما يشير إلى أن معامل التخميد الذي تم الحصول عليه عن طريق تحديد استجابة سعة وتردد النظام له نفس ترتيب الحجم مثل القيمة النظرية المحسوبة، وينشأ الخطأ من تخميد مادة الهيكل الميكانيكي، خطأ التركيب أثناء التثبيت والاختبار، وخطأ إدخال الشاكر، والعوامل البيئية الأخرى. العوامل البيئية.2.الاستنتاجتوفر شركة Micro-Magic Inc مقاييس تسارع كوارتز عالية الدقة، مثل AC-5، مع خطأ بسيط ودقة عالية، والتي تتمتع بثبات متحيز يبلغ 5 ميكروجرام، وقابلية تكرار عامل القياس من 50 إلى 100 جزء في المليون، ووزن 55 جرامًا، ويمكن استخدامها على نطاق واسع تستخدم في مجالات التنقيب عن النفط ونظام قياس الجاذبية الصغرى للحامل والملاحة بالقصور الذاتي. AC5نطاق قياس كبير 50 جرام مقياس تسارع بندول كوارتز مقياس تسارع مرن من الكوارتز 
  • الحلول الشائعة للملاحة المتكاملة للملاحة المتكاملة في إطار فقدان الإشارات الساتلية
    الحلول الشائعة للملاحة المتكاملة للملاحة المتكاملة في إطار فقدان الإشارات الساتلية Jan 06, 2025
    النقاط الرئيسيةالمنتج: حلول الملاحة المتكاملة GNSS/INSالميزات الرئيسية:المكونات: يتضمن النظام المتكامل جهاز استقبال GNSS، ووحدة القياس بالقصور الذاتي (IMU)، وأجهزة استشعار اختيارية مثل LiDAR أو عدادات المسافات.الوظيفة: يحافظ على الدقة والثبات أثناء فقدان إشارة GNSS باستخدام أجهزة استشعار إضافية أو قيود حالة الحركة مثل ZUPT.التطبيقات: مثالي للملاحة الحضرية، والتعدين، وقطع الأشجار، والبيئات الأخرى التي تحتوي على عوائق محتملة للإشارة.التنقل بالقصور الذاتي: يستخدم الجيروسكوبات ومقاييس التسارع لقياس الموقع والسرعة والتسارع.الاستنتاج: يتطور تصميم النظام المتكامل، مع حلول تعزز المتانة في البيئات الصعبة مع الموازنة بين التكلفة والتعقيد.في نظام الملاحة المتكامل GNSS/INS، تلعب قياسات GNSS دورًا حاسمًا في تصحيح INS. ولذلك فإن الأداء السليم للنظام المتكامل يعتمد على استمرارية واستقرار إشارات الأقمار الصناعية. ومع ذلك، عندما يعمل النظام تحت الجسور أو مظلات الأشجار أو داخل المباني الحضرية، يمكن بسهولة إعاقة إشارات الأقمار الصناعية أو التداخل معها، مما قد يؤدي إلى فقدان القفل في جهاز استقبال GNSS. وتناقش هذه المقالة الحلول للحفاظ على الدقة والاستقرار أنظمة الملاحة المتكاملة GNSS/INS عند فقدان إشارات الأقمار الصناعية.عندما تكون إشارة القمر الصناعي غير متاحة لفترة طويلة، يؤدي عدم وجود تصحيحات GNSS إلى تراكم أخطاء INS بسرعة، خاصة في الأنظمة ذات وحدات قياس القصور الذاتي ذات الدقة المنخفضة. وتؤدي هذه المشكلة إلى تراجع دقة واستقرار واستمرارية تشغيل النظام المتكامل. وبالتالي، فمن الضروري معالجة هذه المشكلة لتعزيز قوة النظام المتكامل في مثل هذه البيئات المعقدة.1. حلان رئيسيان لمعالجة فقدان إشارة GNSS/INSيوجد حاليًا حلان رئيسيان لمعالجة سيناريو فقدان إشارة القمر الصناعي.الحل 1: دمج أجهزة الاستشعار الإضافيةمن ناحية، يمكن دمج أجهزة استشعار إضافية في نظام GNSS/INS الحالي، مثل عدادات المسافات، وLiDAR، وأجهزة الاستشعار الفلكية، وأجهزة الاستشعار البصرية. وبالتالي، عندما يؤدي فقدان إشارة القمر الصناعي إلى عدم توفر نظام GNSS، يمكن لأجهزة الاستشعار المضافة حديثًا توفير معلومات القياس وتشكيل نظام متكامل جديد مع INS لمنع تراكم أخطاء INS. تتضمن مشكلات هذا النهج زيادة تكاليف النظام بسبب أجهزة الاستشعار الإضافية وتعقيد التصميم المحتمل إذا كانت أجهزة الاستشعار الجديدة تتطلب نماذج تصفية معقدة.الشكل 1 نظرة عامة على نظام الملاحة المتكامل GNSS IMU ODO LiDAR SLAM.الحل 2: تقنية ZUPTمن ناحية أخرى، يمكن إنشاء نموذج تحديد المواقع مع قيود حالة الحركة بناءً على خصائص حركة السيارة. ولا تتطلب هذه الطريقة إضافة أجهزة استشعار جديدة إلى النظام المتكامل الحالي، وبالتالي تجنب التكاليف الإضافية. عندما لا يكون GNSS متاحًا، يتم توفير معلومات القياس الجديدة من خلال قيود حالة الحركة لقمع انحراف INS. على سبيل المثال، عندما تكون السيارة ثابتة، يمكن تطبيق تقنية التحديث الصفري السرعة (ZUPT) لمنع تراكم أخطاء INS.ZUPT هي طريقة منخفضة التكلفة وشائعة الاستخدام للتخفيف من تباعد INS. عندما تكون السيارة متوقفة، يجب أن تكون سرعة السيارة صفرًا نظريًا. ومع ذلك، نظرًا لتراكم أخطاء INS بمرور الوقت، فإن سرعة الإخراج ليست صفرًا، لذلك يمكن استخدام سرعة إخراج INS كمقياس لخطأ السرعة. وبالتالي، استنادًا إلى القيد المتمثل في أن سرعة السيارة صفر، يمكن إنشاء معادلة قياس مقابلة، مما يوفر معلومات القياس للنظام المتكامل ويمنع تراكم أخطاء INS.الشكل 2. المخطط الانسيابي لخوارزمية GNSSIMU المستندة إلى ZUPT المقترنة بإحكام مع CERAV.ومع ذلك، فإن تطبيق ZUPT يتطلب أن تكون السيارة ثابتة، مما يجعلها تقنية تحديث ثابتة للسرعة صفر ولا يمكنها توفير معلومات القياس أثناء المناورات العادية للمركبة. وفي التطبيقات العملية، يتطلب ذلك توقف السيارة بشكل متكرر من حالة الحركة، مما يقلل من قدرتها على المناورة. بالإضافة إلى ذلك، يتطلب ZUPT الكشف الدقيق عن اللحظات الثابتة للمركبة. إذا فشل الاكتشاف، فقد يتم تقديم معلومات قياس غير صحيحة، مما قد يؤدي إلى فشل هذه الطريقة وحتى التسبب في انخفاض دقة النظام المتكامل أو اختلافها.خاتمةيمكن أن يؤدي فقدان إشارات الأقمار الصناعية إلى تراكم الأخطاء بسرعة في نظام INS، خاصة في البيئات المعقدة مثل المناطق الحضرية. يتم تقديم حلين رئيسيين: إضافة أجهزة استشعار إضافية، مثل LiDAR أو أجهزة الاستشعار المرئية، لتوفير قياسات بديلة، أو استخدام قيود حالة الحركة مثل تقنية Zero-Velocity Update (ZUPT) لتصحيح أخطاء INS. ولكل نهج مزاياه وتحدياته الخاصة، حيث يؤدي تكامل أجهزة الاستشعار إلى زيادة التكاليف والتعقيد، بينما يتطلب ZUPT أن تكون السيارة ثابتة ويتم اكتشافها بدقة لتكون فعالة.تعد شركة Micro-Magic Inc في طليعة تكنولوجيا الملاحة بالقصور الذاتي وقد قدمت مؤخرًا ثلاثة منتجات MEMS INS بمساعدة GNSS بمستويات مختلفة من الدقة (المستوى الصناعي والمستوى التكتيكي ومستوى الملاحة). ومن الجدير بالذكر أن المستوى الصناعي MEMS GNSS/INS I3500 يتميز بعدم استقرار متحيز قدره 2.5 درجة/ساعة وسير عشوائي زاوي قدره 0.028 درجة/√ساعة، إلى جانب مقياس تسارع MEMS عالي الدقة مع نطاق كبير (±6 جرام، عدم استقرار متحيز صفر).
  • حلول لاستشعار الإمالة الفعال باستخدام مقاييس التسارع MEMS
    حلول لاستشعار الإمالة الفعال باستخدام مقاييس التسارع MEMS Dec 23, 2024
    النقاط الرئيسيةالمنتج: مقياس تسارع MEMS عالي الدقة ACM 1200سمات:ثبات الانحياز: 100 مجم لإزاحة الجاذبية الصفرية بشكل موثوقالقرار: 0.3 ملغ لقياسات دقيقةنطاق درجة الحرارة: معايرة المصنع من -40 درجة مئوية إلى +80 درجة مئويةالتطبيقات: مصممة لمراقبة الميل في الهياكل الهيدروليكية، والهندسة المدنية، والبنية التحتيةالمزايا: دقة عالية (دقة إمالة تبلغ 0.1 درجة)، وفعالة في البيئات الديناميكية، وتعالج معايير رئيسية مثل انخفاض مستوى الضجيج، والتكرار، وحساسية المحاور المتقاطعة، مما يعزز الموثوقية والأداء على المدى الطويل في أنظمة استشعار الإمالة.في مجال أنظمة MEMS، أصبحت مقاييس التسارع السعوية تقنية أساسية لاستشعار الميل أو الميل. تواجه هذه الأجهزة، الضرورية لمختلف التطبيقات الصناعية والاستهلاكية، تحديات كبيرة، خاصة في البيئات الديناميكية حيث تنتشر الاهتزازات والصدمات. يتطلب تحقيق الدقة العالية، مثل دقة الميل بمقدار 0.1 درجة، معالجة مجموعة من المواصفات الفنية وعوامل الخطأ. تتعمق هذه المقالة في المعايير والحلول الأساسية لاستشعار الميل بشكل فعال باستخدام مقاييس تسارع MEMS.1. المعايير الأساسية للاستشعار الدقيق للإمالةاستقرار الانحياز: يشير استقرار الانحياز إلى قدرة مقياس التسارع على الحفاظ على إزاحة ثابتة عند الصفر مع مرور الوقت. ويضمن الاستقرار العالي للتحيز أن تظل قراءات المستشعر موثوقة ولا تنحرف، وهو أمر بالغ الأهمية للحفاظ على الدقة في قياسات الميل. الإزاحة على درجة الحرارة: يمكن أن تتسبب تغيرات درجة الحرارة في حدوث تغيرات في إزاحة مقياس التسارع عند الصفر. يعد تقليل هذه التحولات، المعروفة باسم إزاحة درجة الحرارة، أمرًا ضروريًا للحفاظ على الدقة عبر ظروف التشغيل المختلفة.انخفاض مستوى الضجيج: يمكن أن تؤثر الضوضاء في قراءات المستشعر بشكل كبير على دقة قياسات الميل. تعد مقاييس التسارع منخفضة الضوضاء أمرًا حيويًا لتحقيق قراءات ميل دقيقة ومستقرة، خاصة في البيئات الثابتة.التكرار: تشير التكرار إلى قدرة المستشعر على إنتاج نفس المخرجات في ظل ظروف مماثلة خلال تجارب متعددة. تضمن إمكانية التكرار العالية أداءً متسقًا، وهو أمر بالغ الأهمية لاستشعار الإمالة بشكل موثوق.تصحيح الاهتزاز: في البيئات الديناميكية، يمكن أن يؤدي الاهتزاز إلى تشويه بيانات الإمالة. يعمل تصحيح الاهتزاز الفعال على تقليل تأثير هذه الاضطرابات، مما يسمح بإجراء قياسات دقيقة للإمالة حتى عندما يتعرض المستشعر لاهتزازات خارجية.الحساسية عبر المحاور: تقيس هذه المعلمة مدى تأثر خرج المستشعر بالتسارع المتعامد مع محور القياس. تعد الحساسية المنخفضة للمحاور المتقاطعة ضرورية لضمان استجابة مقياس التسارع بدقة للإمالة على طول المحور المقصود فقط.2. التحديات في البيئات الديناميكيةتشكل البيئات الديناميكية تحديات كبيرة لمقاييس تسارع MEMS في تطبيقات استشعار الميل. يمكن أن يؤدي الاهتزاز والصدمة إلى حدوث أخطاء تؤدي إلى إتلاف بيانات الإمالة، مما يؤدي إلى عدم دقة القياس بشكل كبير. على سبيل المثال تحقيق
  • درجة الملاحة MEMS IMU VS درجة تكتيكية MEMS IMU
    درجة الملاحة MEMS IMU VS درجة تكتيكية MEMS IMU Dec 23, 2024
    النقاط الرئيسيةالمنتج: MEMS IMU UF300A (درجة الملاحة) من شركة Micro-Magic Inc مقابل UF100A (درجة تكتيكية).ميزات الملاحة UF300A:الحجم: صغير الحجم لمختلف التطبيقاتالجيروسكوب: التكرار التحيز
  • المشاكل المادية التي تؤثر على الاستقرار طويل الأجل لدقة الجيروسكوب MEMS والتدابير المضادة
    المشاكل المادية التي تؤثر على الاستقرار طويل الأجل لدقة الجيروسكوب MEMS والتدابير المضادة Dec 23, 2024
    النقاط الرئيسية**المنتج:** جيروسكوب MEMS لأدوات القصور الذاتي**سمات:**– **المواد:** سبائك معدنية، مواد وظيفية، بوليمرات عضوية، مواد غير عضوية غير معدنية– **مؤثرات الاستقرار:** العيوب المجهرية، حجم الحبوب، الملمس، الإجهاد الداخلي– **التأثير البيئي:** يتأثر الأداء بالحمل الزائد والاهتزاز ودورات درجة الحرارة- **تنظيم البنية الدقيقة:** استخدام مركبات SiC/Al لتقليل كثافة الخلع وتحسين القوة**المزايا:** يعزز الدقة والاستقرار على المدى الطويل، ويضمن التحكم المخصص في البنية الدقيقة الموثوقية في ظل ظروف مختلفة، وهو أمر بالغ الأهمية للتطبيقات في مجال الطيران والتسجيل الدقيق.في السنوات الأخيرة، مع التطور السريع في مجال تسجيل النفط والفضاء والتعدين والمسح ورسم الخرائط وغيرها من المجالات، أصبحت الدقة والاستقرار على المدى الطويل للأدوات الدقيقة مثل جيروسكوب MEMS أكثر إلحاحًا. أظهرت الدراسات أن عدم الاستقرار البعدي للمواد هو أحد الأسباب الرئيسية لضعف دقة واستقرار أدوات القصور الذاتي. يختلف استقرار الأبعاد عن التمدد الحراري أو أداء التدوير الحراري، فهو مؤشر الأداء الرئيسي لمواد الأجزاء الميكانيكية الدقيقة، ويشير إلى قدرة الأجزاء على الحفاظ على حجمها وشكلها الأصلي في بيئة معينة.مادة أداة القصور الذاتي القائمة على جيروسكوب MEMSهناك أربعة أنواع رئيسية من المواد المكونة لأداة القصور الذاتي، أحدهما معدني (مثل سبائك الألومنيوم والألومنيوم، والفولاذ المقاوم للصدأ، والنحاس وسبائك النحاس، وسبائك التيتانيوم، والبريليوم، والذهب، وما إلى ذلك) ومواده المركبة؛ ثانيًا، المواد الوظيفية (مثل السبائك المغناطيسية الناعمة من الحديد والنيكل، والسبائك المغناطيسية الصلبة من الساماريوم والكوبالت، وسبائك المغناطيسية الصلبة من النيكل والكوبالت، وما إلى ذلك)؛ ثالثًا، البوليمرات العضوية (مثل بولي تترافلوروإيثيلين، والمطاط، وراتنجات الإيبوكسي، وما إلى ذلك)؛ والرابع هو المواد غير المعدنية غير العضوية (مثل زجاج الكوارتز، والسيراميك القابل للمعالجة، وما إلى ذلك)، والتي تكون الكمية الأكبر منها من المعدن ومواده المركبة.في السنوات الأخيرة، حققنا اختراقات في تصنيع الآلات عالية الدقة، وتكنولوجيا التجميع المنخفضة/الخالية من الإجهاد، لكننا ما زلنا نجد أنه بعد تسليم الأداة، هناك انجراف بطيء في الدقة ولا يمكن تحقيق الاستقرار على المدى الطويل. في الواقع، بعد التصميم الهيكلي، يتم تحديد عملية معالجة الأجزاء وتجميعها، ويعتمد استقرار دقة الأداة على المدى الطويل على الخصائص الجوهرية للمادة.تؤثر الخصائص الجوهرية للمادة (مثل العيوب المجهرية، والمرحلة الثانية، وحجم الحبوب، والملمس، وما إلى ذلك) بشكل مباشر على ثبات أبعاد المادة. بالإضافة إلى ذلك، ستخضع مادة الجهاز أيضًا لتغيرات أبعاد لا رجعة فيها في ظل التفاعل مع البيئة الخارجية (مجال الضغط، ومجال درجة الحرارة، والوقت، وما إلى ذلك). يوضح الشكل 1 العلاقة بين دقة أداة القصور الذاتي وظروف الخدمة والبنية المجهرية للمادة وتغير الحجم. إذا أخذنا جيروسكوب MEMS كمثال، فإن ظروف العمل وبيئة التخزين الخاصة به لها تأثير على استقرار أبعاد المادة. حتى لو كان جيروسكوب MEMS يحتوي على نظام للتحكم في درجة الحرارة، إذا كانت البنية المجهرية للمادة نفسها غير مستقرة، أو كانت هناك مرحلة ثانية شبه مستقرة، أو كان هناك إجهاد متبقي كلي/جزئي أثناء التجميع، فسوف تنحرف دقة الجهاز.الشكل 1: العلاقة بين دقة أدوات القصور الذاتي وظروف الخدمة والبنية المجهرية والتغيرات في الأبعادالعوامل المؤثرة في تغير الموادتشتمل الخصائص الجوهرية لمواد جيروسكوب MEMS بشكل أساسي على العيوب المجهرية، والمرحلة الثانية، والحبوب، والملمس، والإجهاد الداخلي، وما إلى ذلك. وتتفاعل العوامل البيئية الخارجية بشكل أساسي مع الخصائص الجوهرية لإحداث تغييرات في الأبعاد.1. كثافة وشكل العيوب المجهريةتشمل العيوب المجهرية في المعادن والسبائك الشواغر، والخلع، والتوائم وحدود الحبوب، وما إلى ذلك. والخلع هو الشكل الأكثر شيوعًا للعيوب المجهرية، والذي يشير إلى العيوب التي تتكون من ترتيب غير منتظم للذرات في بلورات مرتبة بانتظام، مثل الغياب أو الزيادة من نصف الطائرة الذرية من خلع الحافة. نظرًا لأن الخلع يؤدي إلى إدخال حجم حر إلى بلورات مثالية، تحدث تغيرات في حجم المادة، كما هو موضح في الشكل 2. ومع ذلك، في حالة نفس العدد من الذرات، فإن وجود الخلع يجعل الحجم الحر حول الذرات يظهر، مما يؤدي إلى ظهور حجم حر حول الذرات. ينعكس في زيادة حجم السبائك.الشكل 2: رسم تخطيطي لتأثير كثافة العيوب المجهرية في المواد على أبعاد المادة2. تأثير الحبوب والملمس على الثباتالعلاقة بين سلالة ε من المعدن أو السبائك تحت الضغط المطبق σ وحجم الحبوب d للمادة، والكثافة ρ للخلع المتحرك، والإجهاد σ0 المطلوب لبدء الخلع الأول، ومعامل القص G لل المواد مشتقة:يمكن أن نرى من الصيغة أن تكرير الحبوب يمكن أن يقلل من الإجهاد المتولد، وهو أيضًا الاتجاه الموجه لتنظيم البنية المجهرية في عملية التثبيت.بالإضافة إلى ذلك، في الإنتاج الفعلي، عند استخدام القضبان المبثوقة والألواح الملفوفة لمعالجة مكونات الأجهزة الدقيقة، من الضروري أيضًا الانتباه إلى تباين المادة، كما هو موضح في الشكل 3. أخذ سبيكة 2024Al لإطار الجيروسكوب الميكانيكي كمثال ، يعتمد الإطار في الشكل 3 (أ) بشكل عام شريط سبائك الألومنيوم 2024 المبثوق. بسبب التشوه البلاستيكي الكبير، ستظهر الحبوب اتجاهًا تفضيليًا لتكوين الملمس، كما هو موضح في الشكل 3 (ب) و(ج)، يشير الملمس إلى الحالة التي ينحرف فيها الاتجاه البلوري للمادة متعددة البلورات بشكل كبير عن التوزيع العشوائي.الشكل 3: البنية المجهرية لقضبان سبيكة 2024Al لإطارات الجيروسكوب الميكانيكيةالمنتجات في المادة3. تأثير البيئة على ثبات الأبعاد للمواد بشكل عام، تحتاج أدوات القصور الذاتي إلى الحفاظ على استقرار الدقة على المدى الطويل في ظل ظروف مثل الحمل الزائد الكبير، والاهتزاز والصدمات، ودورة درجة الحرارة، مما يطرح متطلبات تثبيت أكثر تطلبًا للبنية المجهرية وخصائص المواد. بأخذ مركبات SiC/2024Al من فئة الأدوات كمثال، يتم تحقيق استقرار الأبعاد على المدى الطويل من خلال عملية التثبيت في تصنيع هياكل الأجهزة بالقصور الذاتي. أظهرت النتائج أن سعة تغيير الحجم (~ 1.5×10-4) الناتجة عن عملية الاحتفاظ بدرجة حرارة ثابتة لمركب SiC/ الألومنيوم النقي (فقط الضغط الداخلي يلعب تأثيرًا على تغيير الحجم) أكبر من تلك الموجودة في سبائك الألومنيوم عملية الحفاظ على درجة حرارة ثابتة (فقط هطول الأمطار المتقادم هو الذي يؤثر على تغيير الحجم) (~ -0.8×10-4). عندما تصبح المصفوفة سبيكة Al، سيتم تضخيم تأثير الضغط الداخلي للمركب على التغير في الأبعاد، كما هو مبين في الشكل 4. بالإضافة إلى ذلك، في ظل بيئات الخدمة المختلفة، يختلف اتجاه تغير الضغط الداخلي لنفس المادة ، وحتى الاتجاه المعاكس لتغير الحجم سيتم عرضه. على سبيل المثال، تنتج مركبات SiC/2024Al إطلاق إجهاد ضاغط عند درجة حرارة ثابتة تبلغ 190 درجة مئوية، ويزداد الحجم، بينما يحدث إطلاق إجهاد الشد عند 500 صدمة باردة وساخنة عند -196 ~ 190 درجة مئوية، ويتناقص الحجم.لذلك، عند تصميم واستخدام مركبات مصفوفة الألومنيوم، من الضروري التحقق بشكل كامل من حمل درجة حرارة الخدمة وحالة الإجهاد الأولية ونوع مادة المصفوفة. في الوقت الحاضر، تتمثل فكرة تصميم العملية القائمة على تثبيت الإجهاد في تنفيذ الصدمة الباردة والحرارية التي تغطي نطاق درجة حرارة الخدمة، وإطلاق الضغط الداخلي، وتشكيل عدد كبير من هياكل الخلع المستقرة داخل المادة المركبة، وتعزيز عدد كبير من الترسيب الثانوي. .الشكل 4: التغيرات الأبعاد في سبائك الألومنيوم والمواد المركبة أثناء الشيخوخة في درجة حرارة ثابتةتدابير لتحسين استقرار الأبعاد للمكونات1. تنظيم وتحسين العيوب الدقيقةيعد اختيار نظام المواد الجديد طريقة فعالة للتحكم في العيوب الدقيقة. على سبيل المثال، استخدام مركبات SiC/Al من فئة الأدوات، وجزيئات السيراميك SiC لتثبيت الخلع في مصفوفة الألومنيوم، أو تقليل كثافة الخلع المتحرك، أو تغيير نوع الخلل في المعدن. بأخذ مركبات SiC/Al كمثال، يوضح البحث أنه عندما يتم تقليل متوسط المسافة بين جزيئات السيراميك في المركبات إلى 250 نانومتر، يمكن تحضير المركب مع خطأ الطبقة، والحد المرن للمركب مع خطأ الطبقة هو 50 % أعلى من تلك الموجودة في المركب بدون خطأ في الطبقة، كما هو موضح في الشكل 5.الشكل 5: نوعان من مورفولوجيا المواد المركبةتجدر الإشارة إلى أنه عند تطوير مسار عملية التحكم التنظيمي، من الضروري أيضًا تحديد نظام المواد المناسب ومعلمات عملية الصدمة الباردة والحرارية جنبًا إلى جنب مع ظروف الإجهاد ونطاق درجة حرارة العمل لبيئة خدمة أداة القصور الذاتي. في الماضي، كان اختيار نظام المواد ومعلمات العملية يعتمد على الخبرة وعدد كبير من بيانات الأداء، مما أدى إلى عدم كفاية الأساس النظري لتصميم العملية بسبب نقص دعم البنية الدقيقة. في السنوات الأخيرة، مع التطوير المستمر لتكنولوجيا الاختبارات التحليلية، يمكن إجراء تقييم كمي أو شبه كمي لكثافة العيوب المجهرية ومورفولوجيتها عن طريق مقياس حيود الأشعة السينية، والمجهر الإلكتروني الماسح، والمجهر الإلكتروني النافذ، الذي يوفر الدعم الفني للمواد تحسين النظام وفحص العمليات. 2. تنظيم الحبوب والملمس تأثير الملمس على استقرار الأبعاد هو التباين الذي يسبب تغير الأبعاد. كما ذكرنا سابقًا، يحتوي إطار جيروسكوب MEMS على متطلبات رأسية صارمة للغاية في الاتجاه المحوري والشعاعي، ويجب التحكم في خطأ المعالجة بترتيب الميكرونات لتجنب التسبب في انحراف النقطه الوسطى لجيروسكوب MEMS. لهذا السبب، تم إخضاع القضيب المبثوق 2024Al للمعالجة الحرارية للتشوه. يوضح الشكل 6 الصور المعدنية لتشوه الضغط المحوري بنسبة 40٪ لسبائك الألومنيوم المبثوقة 2024 وصور البنية المجهرية قبل التشوه الحراري وبعده. قبل المعالجة الحرارية للتشوه، من الصعب حساب حجم الحبوب المحورية، ولكن بعد المعالجة الحرارية للتشوه، تكون درجة الحبوب متساوية المحور عند حافة الشريط 0.98، وتزداد درجة الحبوب متساوية المحور بشكل ملحوظ . بالإضافة إلى ذلك، يمكن أن نرى من الشكل أن الفرق الصغير في مقاومة التشوه بين المحوري والشعاعي للعينة الأصلية هو 111.63MPa، مما يدل على تباين قوي. بعد المعالجة الحرارية للتشوه، كانت قيم مقاومة التشوه الصغيرة المحورية والشعاعية 163 ميجا باسكال و 149 ميجا باسكال، على التوالي. بالمقارنة مع العينة الأصلية، تغيرت نسبة مقاومة التشوه الصغيرة المحورية والشعاعية من 2.3 قبل المعالجة الحرارية للتشوه إلى 1.1، مما يشير إلى أنه تم التخلص من تباين المادة بشكل أفضل بعد المعالجة الحرارية للتشوه.الشكل 6: رسم تخطيطي للمعالجة المتناحية وتغييرات البنية المجهرية واختبار أداء قضبان سبائك الألومنيوملذلك، عندما يجب استخدام قضبان أو ألواح سبائك الألومنيوم لمعالجة مكونات الأجهزة بالقصور الذاتي، يوصى بزيادة وصلة المعالجة الحرارية للتشوه، وإزالة الملمس، والحصول على تنظيم متناحي، وتجنب تباين التشوه. يمكن الحصول على المعلومات الإحصائية للنسيج عن طريق EBSD في SEM أو TKD في TEM أو XRD ثلاثي الأبعاد، ويمكن تحليل تغييرات النسيج كميًا.خاتمةبناءً على الحاجة الملحة لاستقرار الدقة على المدى الطويل لأدوات القصور الذاتي، تستعرض هذه الورقة بشكل منهجي تأثير استقرار الأبعاد من منظور علم المواد، وتطرح كيفية تحسين استقرار الدقة على المدى الطويل لأدوات القصور الذاتي من الخصائص الجوهرية من المواد. إن NF-1000، في حزمة سيراميك LCC، عبارة عن جيروسكوب MEMS مطور موجه نحو الشمال يعتمد على MG-502، وقد تمت زيادة نطاقه من 50-100 درجة/ثانية إلى 500 درجة/ثانية، مما يحقق إنجازًا بارزًا. تعتبر المواد ضرورية لتحقيق الاستقرار على المدى الطويل، وهي الأساس لأفضل أداء لها. آمل أنه من خلال هذه المقالة، يمكنك فهم معرفة الجيروسكوب MEMS، وتريد معرفة المزيد من المعلومات، ويمكنك قراءة المنتجات والمقالات ذات الصلة. MG502Mg-502 جيروسكوبات ذات محور واحد عالية الدقة  
  • بناء مكتشف MEMS الشمالي المصغر عالي الدقة
    بناء مكتشف MEMS الشمالي المصغر عالي الدقة Dec 23, 2024
    النقاط الرئيسيةالمنتج: مكتشف الشمال MEMS المصغر عالي الدقةالميزات الرئيسية:المكونات: وحدة قياس القصور الذاتي (IMU) مع جيروسكوب MEMS ثلاثي المحاور ومقياس تسارع، بالإضافة إلى دوائر الطاقة والتحكم والعرض.الوظيفة: توفر توجيهًا دقيقًا بشكل مستقل، ولا تتأثر بالأقمار الصناعية أو الطقس.التطبيقات: تستخدم في التعدين وقطع الأشجار والنفط والسفن والأنفاق.التنقل بالقصور الذاتي: يقيس الموقع والسرعة والتسارع باستخدام الجيروسكوبات ومقاييس التسارع.الخلاصة: يتطور تصميم MEMS North Finder، حيث تتكيف نماذج مثل NF1000 مع الأشكال الأسطوانية للصناعات المتخصصة مثل قطع أشجار البترول.كأداة لقياس الزاوية بين الشمال والشمال الحقيقي، يمكن لمكتشف الشمال توفير معلومات دقيقة عن الاتجاه والموقف في بيئة القاعدة الثابتة، ويلعب دورًا مهمًا في التعدين وقطع الأشجار ومعدات السفن واختراق الأنفاق وغيرها من المجالات. في الوقت الحاضر، لدى جميع مناحي الحياة متطلبات أعلى وأعلى لحجم ودقة الباحث عن الشمال، وبالتالي فإن الباحث عن الشمال أكثر دقة وأصغر حجمًا.في الأصل، سأبدأ من وجهة النظر الأساسية، مع التركيز على تكوين نظام البحث عن الشمال، حتى يتمكن الجميع من فهم مكتشف الشمال بشكل أكثر وضوحًا.المكونات الأساسية لباحث الشماليستطيع مكتشف الشمال MEMS توفير معلومات الوجهة للجسم المتحرك بطريقة مستقلة تمامًا، ويعمل دون الاعتماد على الأقمار الصناعية، ولا يتأثر بالمناخ، ولا يتطلب عمليات معقدة. فهو لا يوفر واجهة إخراج البيانات للكمبيوتر فحسب، بل يوفر أيضًا واجهة جيدة بين الإنسان والآلة.يتكون جهاز اكتشاف MEMS North بشكل أساسي من وحدة قياس القصور الذاتي (IMU) والجزء الخطي، ويظهر مخطط كتلة الأجهزة في الشكل 1. وتتكون وحدة قياس القصور الذاتي (IMU) من جيروسكوب وآلية دوارة. يتكون جزء الدائرة بشكل أساسي من أربع لوحات دوائر، بما في ذلك: لوحة الطاقة ولوحة التحكم ولوحة مضخم الطاقة ولوحة القاعدة. ويبين الجدول 1 مكونات نظام البحث عن الشمال.الشكل 1: مخطط كتلة الأجهزة للباحث عن الشمالالجدول 1: مكونات الباحث عن الشماليوجد مؤشران على لوحة مكتشف الشمال MEMS: مؤشر الباحث عن الشمال ومؤشر مصدر الطاقة؛ زرين: زر الشمال ومفتاح الطاقة؛ شاشة رقمية مكونة من خمسة أرقام وسبعة أجزاء؛ فتيل الجهاز متصل خارجيًا بموصلين: مقبس طاقة ومقبس واجهة اتصال.يتكون مكتشف الشمال من وحدات قياس وخوارزميات للقصور الذاتي، وهو نفس مبدأ نظام الملاحة بالقصور الذاتي، والفرق هو أن الخوارزميات المختلفة تشكل أنظمة مختلفة. لذلك، فإن نظام البحث عن الشمال هو أيضًا نظام ملاحة بالقصور الذاتي.يمكن لنظام الملاحة بالقصور الذاتي قياس معلومات الموقع والسرعة اللحظية والتسارع والسرعة الزاوية من خلال مكونات قياس القصور الذاتي دون تدخل من البيئة الخارجية، وبدون إشعاع وفي السر، ويمكنه توفير الموقع وزاوية الموقف والسرعة الخطية والسرعة الزاوية ومعلومات المعلمات الأخرى بشكل مستمر. الطيران والفضاء والملاحة والمجالات العسكرية.يظهر الشكل 2 المبدأ الأساسي للملاحة بالقصور الذاتي. نظام الإحداثيات الموضح في الشكل هو أوكسي، حيث (x,y) هو الموضع اللحظي. على منصة نظام الملاحة بالقصور الذاتي، يتم الحصول على السرعة Vx وVy والموضع اللحظي x وy من خلال الحساب الحاسوبي، حيث يتحكم المحور x والمحور y في محاور القياس لمقياسي تسارع على التوالي، ويستخدم مقياس التسارع للقياس تسارع المحورين.الشكل 2: المبدأ الأساسي للملاحة بالقصور الذاتيفي نظام الملاحة بالقصور الذاتي، يعتبر سطح الأرض كرويًا، ثم يتم تمثيل موضع المتجه بخط الطول وخط العرض، وإذا كان المحوران x وy يشيران إلى الشمال والشرق على التوالي، يتم تمثيل موضع المتجه بخط الطول وخط العرض:حيث R هو نصف قطر الأرض؛ φ0 – خط العرض الأولي للموجة الحاملة؛ 0 – خط الطول الأولي للموجة الحاملة؛φ - الموقع الجغرافي للموجة الحاملة؛  - الموقع الجغرافي للموجة الحاملة على خط الطول؛vx – السرعة المتجهة شمالاً؛ vy – السرعة المتجهة شرقا.تتكون وحدة قياس القصور الذاتي، والتي تسمى أيضًا وحدة الملاحة بالقصور الذاتي، من مقياس تسارع وجيروسكوب. يتكون نظام الملاحة بالقصور الذاتي من ثلاثة أجزاء، بما في ذلك وحدة قياس القصور الذاتي والكمبيوتر والشاشة. ويقاس تسارع الطائرة التي تتحرك في ثلاثة اتجاهات عرضية وطولية وعمودية بثلاثة مقاييس تسارع، كما يقاس دوران الطائرة في ثلاثة اتجاهات طولية وعمودية بواسطة الجيروسكوب بثلاث درجات حرية. يقوم الكمبيوتر بحساب سرعة الطائرة وموقعها؛ يتم عرض جميع أنواع بيانات معلومات الملاحة بواسطة الشاشة.خاتمةمعظم مكتشف الشمال هو شكل مكعب، ولكن مع الطلب المتزايد من مختلف الصناعات، يتغير مظهر مكتشف الشمال أيضًا. على سبيل المثال، NF1000 هو باحث شمالي مصمم لقطع الأشجار البترولية والحفر الموجه والتعدين، وقد حقق شكله طفرة كبيرة، حيث تطور من مكعب إلى أسطوانة، والتي يمكن أن تتكيف بشكل جيد مع شكل المسبار. نظرًا لأنه باحث شمالي MEMS، فهو يحتوي على جيروسكوب MEMS ثلاثي المحاور ومقياس تسارع MEMS ثلاثي المحاور.آمل أنه من خلال هذه المقالة، يمكنك فهم هيكل مكتشف الشمال المصغر عالي الدقة MEMS، إذا كنت مهتمًا بمعرفة المزيد عن الباحث عن الشمال، فيرجى الاتصال بنا.  NF1000نظام الملاحة بالقصور الذاتي عالي الأداء الديناميكي MEMS North Seeker  
1 2 3 4 5 6
ما مجموعه 6الصفحات
Subscibe To Newsletter
من فضلك تابع القراءة، ابق على اطلاع، اشترك، ونحن نرحب بك لتخبرنا برأيك.
f y

اترك رسالة

اترك رسالة
إذا كنت مهتما بمنتجاتنا وتريد معرفة المزيد من التفاصيل ، فالرجاء ترك رسالة هنا ، وسوف نقوم بالرد عليك في أقرب وقت ممكن.
إرسال

وطن

منتجات

واتس اب

اتصل بنا