وطن

مقياس تسارع MEMS

  • Technical Analysis of Inclinometer Tilt: Accurate Measurement, Stable and Reliable
    Technical Analysis of Inclinometer Tilt: Accurate Measurement, Stable and Reliable Jun 13, 2025
    Discover the advanced technology behind electronic tilt sensors (inclinometers), their working principles, advantages, applications, and future trends. Ideal for industrial automation, construction, aerospace, and more.   Introduction: The Importance of Inclination Measurement   In modern industrial automation, construction engineering, aerospace, and geological exploration, the inclination measurement technology plays a crucial role. Whether it is the posture adjustment of large mechanical equipment, the deformation monitoring of building structures, or the flight stability control of unmanned aircraft, precise inclination data is the foundation for ensuring the safe operation and efficient operation of the systems. The electronic inclinometer Tilt is a core device in the field of angle measurement. With its high precision, high stability and digital output features, it is gradually replacing traditional mechanical angle measurement tools and has become the new favorite in the industrial measurement field.   The working principle of the electronic inclination meter   The core principle of the electronic inclinometer is based on MEMS (Micro-Electro-Mechanical Systems) acceleration sensors or liquid capacitance sensing technology. When the device is tilted, the sensor will sense the changes in the components of gravitational acceleration along each axis, and through specific algorithms, calculate the tilt angle of the device relative to the horizontal plane.   Take the three-axis MEMS inclinometer as an example. Its working principle can be briefly described as follows: 1. Three orthogonal accelerometers are used to measure the gravitational components along the X, Y, and Z axes respectively. 2. The inclination angles in each direction are calculated using trigonometric functions. 3. Environmental interference is eliminated through temperature compensation and filtering algorithms. 4. High-precision digital inclinometer signals are output.   The technical advantages of the electronic inclinometer   Compared with traditional mechanical inclinometers, electronic inclinometers have the following significant advantages:   1. High-precision measurement: Modern electronic inclinometers can achieve a resolution of 0.01°, meeting the precision requirements of most industrial applications.   2. Digital Output: Outputs digital signals directly, facilitating integration with PLCs, industrial control computers, and other automated equipment, and simplifying the system architecture.   3. Multi-axis measurement capability: It can simultaneously measure the pitch angle, roll angle, and even yaw angle, providing comprehensive attitude information.   4. Strong anti-interference capability: Equipped with filtering algorithms and temperature compensation mechanisms, it can effectively resist environmental disturbances such as vibration and temperature variations.   5. Compact size: Utilizing MEMS technology, the sensor's size is significantly reduced, making it particularly suitable for applications with limited space.   Typical application scenarios   The electronic inclination meter, thanks to its outstanding performance, has been widely applied in various fields:   1. Construction Engineering Field - Health Monitoring of Large-scale Building Structures - Deformation Monitoring of Infrastructure Such as Bridges and Dams - Attitude Control of Construction Equipment Such as Tower Cranes and Elevators   2. Industrial Automation - Level control of engineering machinery - Equipment calibration of automated production lines - Positioning control of warehousing and logistics equipment   3. Aerospace - Stable flight posture of unmanned aircraft - Directional alignment of satellite solar panels - Landing assistance system for aircraft   4. Geological Exploration - Monitoring of the inclination angle of drilling equipment - Warning system for landslides - Guidance for underground pipeline laying   Technical Challenges and Solutions   Although the electronic inclinometer technology is quite mature, it still encounters some challenges in practical applications:   1. Temperature drift issue Temperature variations can cause the sensor's zero point to drift, thereby affecting measurement accuracy. Modern electronic inclinometers employ temperature compensation algorithms and real-time temperature sensor corrections to minimize the impact of temperature.   2. Vibration Interference Mechanical vibrations in the working environment can generate additional acceleration interference signals. The solutions include: - Implementing mechanical damping design on the hardware - Implementing digital filtering algorithms on the software - Selecting liquid capacitive sensors with better anti-vibration performance   3. Installation Error The unevenness of the sensor installation surface can introduce systematic errors. The advanced electronic inclinometer provides an installation calibration function, which can eliminate installation errors through a simple calibration process.   Future Development Trends   With the widespread adoption of Industry 4.0 and Internet of Things technologies, the electronic inclinometer technology is evolving in the following directions:   1. Higher integration: Integrating inclinometer measurement, data processing and wireless communication functions onto a single chip enables a more compact design.   2. Intelligence: Equipped with AI algorithms, it can perform self-diagnosis, self-calibration and adapt to the environment.   3. Wirelessization: Utilizing low-power Bluetooth, LoRa and other wireless technologies, it is easy to deploy in scenarios where wiring is difficult.   4. Multi-sensor fusion: By integrating sensors such as gyroscopes and magnetometers, it provides more comprehensive attitude information.   Conclusion     The electronic inclinometer, as a key component in modern industrial measurement, is experiencing rapid technological advancements. Whether it is in on-site construction work, the attitude control of precision equipment, or the safety monitoring of infrastructure, the electronic inclinometer is playing a crucial role in the background. When choosing an appropriate electronic inclinometer product, it is recommended to consider factors such as measurement range, accuracy grade, environmental adaptability, and output interface. For special application scenarios, customized solutions can also be considered to achieve the best measurement results. Micro-Magic Company provides tools and technical support for aerospace, mining drilling, and other engineering projects. The current electronic compass series includes products such as T700-I and T7000-B, which have soft magnetic and hard magnetic compensation functions, playing an important role in improving the compass pointing accuracy. T700-I Whatever you needs, Micro-Magic is at your side. T7000-B Whatever you needs, Micro-Magic is at your side. T7000-J Whatever you needs, Micro-Magic is at your side.
  • Analysis of Mid-Low Precision FOG IMU Inertial Measurement System | Guide to Fiber Optic Gyro Navigation Scheme
    Analysis of Mid-Low Precision FOG IMU Inertial Measurement System | Guide to Fiber Optic Gyro Navigation Scheme Apr 01, 2025
    Discover the mid-low precision FOG IMU system: a cost-effective, shock-resistant inertial navigation solution for UAVs, robotics, and marine applications. Learn about its modular design, quick startup, and high stability. In the fields of unmanned systems, intelligent manufacturing, and precise control, the inertial measurement unit (IMU) is becoming a crucial "invisible technology". Today, we will take you to deeply understand a solution that performs well in actual projects - a mid-low precision FOG IMU system designed based on open-loop fiber optic gyroscope (FOG) and MEMS accelerometer.This is not only an inertial sensing device, but also a perfect balance between miniaturization, high cost-effectiveness, and precise navigation. 1. Why Choose FOG IMU? As the traditional platform-based inertial navigation systems are gradually fading from the historical stage, strapdown inertial navigation systems (SINS) have become mainstream relying on mathematical modeling and digital computing.So, what are the core advantages of FOG IMU?(1) Resistance to shock and interference: Fiber optic gyros are naturally shock-resistant and can withstand high G forces, making them particularly suitable for harsh environments.(2) Quick startup: No need for complex initialization; plug and play once powered on.(3) Precise and cost-effective: While meeting navigation requirements, it also controls costs.(4) Easy integration: Small size, low power consumption, and easy embedding.Therefore, it is widely applied in fields such as unmanned aerial vehicles, robots, vehicle-mounted systems, and maritime navigation. 2. Highlights of System Architecture This FOG IMU adopts a modular design, consisting of a three-axis fiber optic gyroscope, a three-axis MEMS accelerometer, a data acquisition module, and a high-speed DSP, supplemented by temperature compensation and error modeling algorithms, to achieve stable output.The six sensitive axes are arranged in three-dimensional orthogonal manner, combined with a software compensation mechanism, to eliminate the influence of structural errors on navigation accuracy.Moreover, this system has also been verified through simulation, ensuring that it still meets the required accuracy for navigation calculations even when using low-precision sensors. 3. Data Acquisition Module: The "Neural Center" of IMU We have specially optimized the data acquisition link:(1) Analog signal conditioning: Two-stage amplification + analog filter, enhancing signal clarity.(2) High-precision ADC sampling: 10ms update cycle, ensuring rapid system response.(3) Temperature compensation channel: Integrated chip and environmental temperature monitoring, achieving full environmental adaptability.This module plays a crucial role in enhancing the overall accuracy of the system. 4. Performance and Real-World Feedback After the prototype deployment and system testing, the performance of this FOG IMU system is as follows:(1) Excellent stability of attitude angles(2) Static errors within the controllable range(3) Strong anti-interference performance, capable of adapting to rapid dynamic changesCurrently, this system has been put into use in a certain type of robot navigation platform, and the feedback is consistent and good. 5. Application Domain Outlook The FOG IMU system is ready to be applied in the following scenarios:(1) Navigation for unmanned aircraft and unmanned vehicles(2) Marine measurement systems(3) Industrial automation equipment(4) Attitude control for low-orbit satellites(5) Intelligent robots and precise positioningIn the future, we will also launch an upgraded version of the FOG IMU tailored for high-precision requirements such as UF-100A. Stay tuned for more updates!   UF100A Middle Precision Fiber Optic Gyroscope Based IMU    
  • حلول لاستشعار الإمالة الفعال باستخدام مقاييس التسارع MEMS
    حلول لاستشعار الإمالة الفعال باستخدام مقاييس التسارع MEMS Dec 23, 2024
    النقاط الرئيسيةالمنتج: مقياس تسارع MEMS عالي الدقة ACM 1200سمات:ثبات الانحياز: 100 مجم لإزاحة الجاذبية الصفرية بشكل موثوقالقرار: 0.3 ملغ لقياسات دقيقةنطاق درجة الحرارة: معايرة المصنع من -40 درجة مئوية إلى +80 درجة مئويةالتطبيقات: مصممة لمراقبة الميل في الهياكل الهيدروليكية، والهندسة المدنية، والبنية التحتيةالمزايا: دقة عالية (دقة إمالة تبلغ 0.1 درجة)، وفعالة في البيئات الديناميكية، وتعالج معايير رئيسية مثل انخفاض مستوى الضجيج، والتكرار، وحساسية المحاور المتقاطعة، مما يعزز الموثوقية والأداء على المدى الطويل في أنظمة استشعار الإمالة.في مجال أنظمة MEMS، أصبحت مقاييس التسارع السعوية تقنية أساسية لاستشعار الميل أو الميل. تواجه هذه الأجهزة، الضرورية لمختلف التطبيقات الصناعية والاستهلاكية، تحديات كبيرة، خاصة في البيئات الديناميكية حيث تنتشر الاهتزازات والصدمات. يتطلب تحقيق الدقة العالية، مثل دقة الميل بمقدار 0.1 درجة، معالجة مجموعة من المواصفات الفنية وعوامل الخطأ. تتعمق هذه المقالة في المعايير والحلول الأساسية لاستشعار الميل بشكل فعال باستخدام مقاييس تسارع MEMS.1. المعايير الأساسية للاستشعار الدقيق للإمالةاستقرار الانحياز: يشير استقرار الانحياز إلى قدرة مقياس التسارع على الحفاظ على إزاحة ثابتة عند الصفر مع مرور الوقت. ويضمن الاستقرار العالي للتحيز أن تظل قراءات المستشعر موثوقة ولا تنحرف، وهو أمر بالغ الأهمية للحفاظ على الدقة في قياسات الميل. الإزاحة على درجة الحرارة: يمكن أن تتسبب تغيرات درجة الحرارة في حدوث تغيرات في إزاحة مقياس التسارع عند الصفر. يعد تقليل هذه التحولات، المعروفة باسم إزاحة درجة الحرارة، أمرًا ضروريًا للحفاظ على الدقة عبر ظروف التشغيل المختلفة.انخفاض مستوى الضجيج: يمكن أن تؤثر الضوضاء في قراءات المستشعر بشكل كبير على دقة قياسات الميل. تعد مقاييس التسارع منخفضة الضوضاء أمرًا حيويًا لتحقيق قراءات ميل دقيقة ومستقرة، خاصة في البيئات الثابتة.التكرار: تشير التكرار إلى قدرة المستشعر على إنتاج نفس المخرجات في ظل ظروف مماثلة خلال تجارب متعددة. تضمن إمكانية التكرار العالية أداءً متسقًا، وهو أمر بالغ الأهمية لاستشعار الإمالة بشكل موثوق.تصحيح الاهتزاز: في البيئات الديناميكية، يمكن أن يؤدي الاهتزاز إلى تشويه بيانات الإمالة. يعمل تصحيح الاهتزاز الفعال على تقليل تأثير هذه الاضطرابات، مما يسمح بإجراء قياسات دقيقة للإمالة حتى عندما يتعرض المستشعر لاهتزازات خارجية.الحساسية عبر المحاور: تقيس هذه المعلمة مدى تأثر خرج المستشعر بالتسارع المتعامد مع محور القياس. تعد الحساسية المنخفضة للمحاور المتقاطعة ضرورية لضمان استجابة مقياس التسارع بدقة للإمالة على طول المحور المقصود فقط.2. التحديات في البيئات الديناميكيةتشكل البيئات الديناميكية تحديات كبيرة لمقاييس تسارع MEMS في تطبيقات استشعار الميل. يمكن أن يؤدي الاهتزاز والصدمة إلى حدوث أخطاء تؤدي إلى إتلاف بيانات الإمالة، مما يؤدي إلى عدم دقة القياس بشكل كبير. على سبيل المثال تحقيق
Subscibe To Newsletter
من فضلك تابع القراءة، ابق على اطلاع، اشترك، ونحن نرحب بك لتخبرنا برأيك.
f y

اترك رسالة

اترك رسالة
إذا كنت مهتما بمنتجاتنا وتريد معرفة المزيد من التفاصيل ، فالرجاء ترك رسالة هنا ، وسوف نقوم بالرد عليك في أقرب وقت ممكن.
إرسال

وطن

منتجات

واتس اب

اتصل بنا