وطن

نظام الملاحة بالقصور الذاتي

  • The New Era of High-Precision Positioning: Deep Integration of RTK Technology and the I3700 Dual-Antenna GNSS/INS System
    The New Era of High-Precision Positioning: Deep Integration of RTK Technology and the I3700 Dual-Antenna GNSS/INS System Jun 27, 2025
    Centimeter-level real-time positioning is crucial in fields like autonomous driving, precision agriculture, and drone surveying. Micro-Magic's I3700 Dual-Antenna GNSS/INS system enhances RTK technology by overcoming limitations like signal occlusion, enabling accurate and reliable navigation in complex environments. This system powers next-gen applications with robust positioning. In digitally driven fields like autonomous driving, precision agriculture, and drone surveying, centimeter-level real-time positioning has become a core requirement. Real-Time Kinematic (RTK) technology reduces traditional GPS positioning errors from meters to centimeters through base station-rover collaboration. The emergence of Micro-Magic’s I3700 High-Performance Dual-Antenna GNSS/INS Integrated Navigation System empowers RTK with enhanced environmental adaptability and reliability, ushering in a new era of high-precision positioning. I. Core Breakthroughs of RTK Technology The RTK system achieves precision positioning through base station-rover collaboration: Base Station: Positioned at known coordinates, it calculates real-time satellite signal errors (e.g., atmospheric delay, clock drift) Rover: Receives error-correction data from the base station and fuses it with its own observations for centimeter-level positioning Real-Time Performance: Data transmission via 4G/NTRIP protocols with <20ms latency Technical Bottleneck: Traditional RTK fails under signal occlusion (tunnels, urban canyons) and cannot provide carrier attitude data. II. I3700 System: The Enhanced Engine for RTK As a high-performance module integrating dual-antenna GNSS + Inertial Navigation (INS), the I3700 overcomes RTK limitations through three innovations: 1. Dual-Antenna Heading Enhancement Baseline Orientation: A/B antenna spacing: 0.8–1.5m; calibrated against the carrier’s Y-axis using the SETBASELINE command Heading Accuracy: 0.2° (under RTK fixed solution), far exceeding single-antenna GPS (2°–5° error) Anti-Occlusion Capability: Maintains heading during GNSS signal loss using a gyroscope with 2.5°/hr bias stability 2. Multi-Source Fusion Algorithm python # Extended Kalman Filter (EKF) Workflow while True: gnss_data = get_rtk_position() # Acquire RTK position imu_data = read_mems() # Read MEMS angular velocity/acceleration wheel_speed = can_obd2_decode() # Decode CAN bus vehicle speed fused_position = ekf_fusion(gnss_data, imu_data, wheel_speed) Supported Peripherals: Odometers, DVL (Doppler Velocity Log), vision sensors Continuous Navigation: Horizontal positioning error <6m within 60s of GNSS loss (with odometer input) 3. Industrial-Grade Reliability Design Parameter Specification Industry Advantage Protection Rating IP68 waterproof Farm/nautical muddy environments Temp. Range -40°C to 85°C Extreme cold/heat conditions Power Supply 6–36V wide-voltage DC Direct vehicle power draw Certification CE/ROHS Export compliance III. Scenario-Based Application Cases 1. Autonomous Agricultural Machinery Challenge: Signal occlusion in farmlands causes path deviation during automated operationsI3700 Solution: Dual antennas provide stable heading, achieving ±2.5cm inter-row navigation with RTK INS maintains <1m error for 10s under tree occlusionCommand: CONFIG MODEL CAR activates vehicle motion constraints 2. Urban Autonomous Driving Key Config: Output 20Hz fused navigation data via LOG INSPVAXB ONTIME 0.05 3. Drone Power Grid Inspection Precision Hovering: 0.8cm+1ppm position accuracy under RTK fixed solution Wind-Resistant Attitude: 150Hz accelerometer compensates crosswind disturbances Data Transmission: RS-422 interface streams binary RAWIMUXB (raw IMU data) IV. Technical Extension: From Positioning to Spatiotemporal Networks I3700’s multi-protocol interfaces enable limitless system integration: Cloud Collaboration: Access Qianxun/China Mobile CORS via 4G DTU CONFIG NTRIP rtk.ntrip.qxwz.com 8002 AUTO qxx 123456 # Qianxun account setup Automotive-Grade Comms: SAE J1939 outputs PGN65341 (attitude)/PGN65345 (heading) Synchronized Triggering: PPS pulse + SYNC_IN pin synchronizes LiDAR scanning Conclusion: The "Dual-Core Era" of Precision Positioning RTK solves absolute positioning accuracy, while GNSS/INS systems like I3700 deliver environmental robustness and attitude dimensionality. Together, they form a "spatiotemporal dual-core," bridging the "last centimeter" gap for autonomous driving, smart agriculture, and robotics.   I3700    
  • Why Choose MEMS GNSS/INS? An Analysis of Five Major Advantages
    Why Choose MEMS GNSS/INS? An Analysis of Five Major Advantages Jun 12, 2025
    Discover the top 5 advantages of MEMS GNSS/INS technology, including cost efficiency, lightweight design, and high accuracy. Ideal for drones, aviation, and surveying.   In modern navigation technology, MEMS GNSS/INS (Micro-Electro-Mechanical System Global Navigation Satellite System/Inertial Navigation System) has gradually become the preferred solution in numerous application fields due to its unique advantages. Whether it is marine surveying, land measurement, or navigation for unmanned aerial vehicles (UAVs), robots, or helicopters, MEMS GNSS/INS can provide outstanding performance. Today, let's talk about its five core advantages.   一、What is MEMS GNSS/INS? MEMS GNSS/INS is a technology that integrates MEMS inertial navigation system (MINS) with global navigation satellite system (GNSS). By combining the advantages of both, it can provide high-precision position (Position), velocity (Velocity) and attitude (Attitude) information, which is abbreviated as PVA. GNSS: Provides absolute position information through satellite signals, but is susceptible to interference or interruption of the signals. INS: Based on inertial sensors, it can continuously output motion data, but there is a problem of error accumulation.   The complementarity of the two enables the integrated system to not only suppress the drift of inertial navigation but also make up for the instability of GNSS signals, thereby achieving high-precision navigation over both short-term and long-term periods.   二、Analysis of Five Major Advantages 1. High Cost Efficiency The manufacturing of MEMS devices adopts the large-scale production technology of the semiconductor industry, which significantly reduces the production cost. Compared with traditional inertial navigation systems such as fiber optic gyroscopes (FOG), the price of MEMS GNSS/INS is more affordable and suitable for a wider range of applications in aviation and other fields.   2. Lightweight and Portable The core feature of MEMS technology is miniaturization, with its size typically measured in micrometers. This compact size makes it an ideal choice for devices with limited space, such as drones or small aircraft. The lightweight design not only reduces the overall load but also enhances fuel efficiency and flight performance.   3. Flexible Installation The compactness of MEMS GNSS/INS enables it to be adapted to various installation positions, whether fixed on the wing, fuselage, or other confined spaces, and can be easily integrated. This flexibility provides more possibilities for the design of modern avionics systems and automation equipment.   4. Low-power Design The advancement of MEMS technology has significantly reduced power consumption. Through the optimization of power supply cycles and low-power modes, the energy consumption of MEMS GNSS/INS is much lower than that of traditional inertial navigation systems. For devices powered by batteries (such as drones), this means longer mission times and fewer charging requirements, significantly enhancing operational efficiency.   5. GNSS integration enhances accuracy Simple MEMS INS can only calculate the motion trajectory based on relative positions, while GNSS can provide absolute positioning. The combination of the two not only compensates for each other's shortcomings but also corrects the accumulated errors of MEMS INS through filtering algorithms, achieving higher-precision navigation.   三、Outstanding Solution: Micro-Magic MEMS INS As a leader in inertial navigation technology, Micro-Magic has launched three GNSS-assisted MEMS INS products with different levels of accuracy, covering requirements for surveying, tactical, and industrial applications. Among them, the surveying-grade product IF3500 stands out particularly: Zero bias stability: 0.06°/hr Accuracy of heave measurement: 5cm or 1% High-precision MEMS accelerometer, with a range of ±10g, zero bias instability < 30µg   This product achieves a seamless integration of GNSS and INS, not only providing short-term high-precision navigation information, but also correcting long-term errors using GNSS. It is an ideal choice for various high-precision applications.   四、Conclusion MEMS GNSS/INS, with its features of low cost, lightweight, flexible installation, low power consumption and high accuracy, is redefining modern navigation technology. It can bring significant value enhancement to users in fields such as aviation, surveying, and automation. If you are looking for an efficient and reliable navigation solution, MEMS GNSS/INS is undoubtedly worth considering! IF3600 Whatever you needs, Micro-Magic is at your side. IF3500 Whatever you needs, Micro-Magic is at your side. IF3700 Whatever you needs, Micro-Magic is at your side.  
  • ما هو MEMS INS بمساعدة GNSS وكيف يعمل؟
    ما هو MEMS INS بمساعدة GNSS وكيف يعمل؟ Jan 14, 2025
    النقاط الرئيسيةالمنتج: I3500 MEMS-Aided GNSS INSالميزات الرئيسية:المكونات: MEMS IMU فعالة من حيث التكلفة، ووحدة تحديد المواقع عبر الأقمار الصناعية ذات الهوائي المزدوج، وأجهزة قياس المغناطيسية، ومقياس الضغط الجوي.الوظيفة: توفر بيانات ملاحية عالية الدقة، وتحافظ على الأداء أثناء انقطاع GNSS.التطبيقات: مناسبة للطائرات بدون طيار والملاحة المستقلة والمسح وتحليل الحركة.التنقل بالقصور الذاتي: يجمع بين قياسات القصور الذاتي للموقع والسرعة وحساب الموقف.الاستنتاج: يجسد I3500 التكامل بين MEMS INS و GNSS، مما يعزز موثوقية الملاحة ودقتها عبر مختلف القطاعات. يشير نظام الملاحة المتكامل MINS/GNSS إلى دمج المعلومات من كل من MINS (MEMS INS) وGNSS (النظام العالمي للملاحة عبر الأقمار الصناعية). يجمع هذا التكامل بين نقاط القوة في كلا النظامين ليكمل كل منهما الآخر ويحقق نتائج PVA دقيقة (الموقع والسرعة والموقف).تصنيف أنظمة الملاحة بالقصور الذاتي MEMSبعد أكثر من 30 عامًا من التطوير، تطورت تقنية القصور الذاتي MEMS بسرعة وشهدت تطبيقًا واسع النطاق. ظهرت العديد من أجهزة القصور الذاتي MEMS العملية وMEMS INS، ووجدت استخدامًا واسع النطاق في مجالات مثل صناعات الطيران والبحرية والسيارات. إن جيروسكوبات MEMS التكتيكية (مع ثبات انحياز يتراوح من 0.1°/ساعة إلى 10°/ساعة، 1σ) ومقاييس تسارع MEMS عالية الدقة (مع ثبات انحياز يتراوح بين 10⁻⁵g إلى 10⁻⁶g، 1σ) قد ساهمت في دخول المجال التكتيكي- تصنيف MEMS INS في مرحلة تطبيق النموذج.بشكل عام، يمكن تصنيف أنظمة MEMS بالقصور الذاتي إلى ثلاثة مستويات: مجموعة أجهزة الاستشعار بالقصور الذاتي (ISA)، ووحدة القياس بالقصور الذاتي (IMU)، ونظام الملاحة بالقصور الذاتي (INS)، كما هو موضح في الشكل 1.الشكل 1: ثلاثة مستويات من Mems Ins (2)MEMS ISA: يتألف فقط من ثلاثة جيروسكوبات MEMS وثلاثة مقاييس تسارع MEMS، وهو يفتقر إلى القدرة على العمل بشكل مستقل.MEMS IMU: يعتمد على MEMS ISA عن طريق إضافة محولات A/D ورقاقات معالجة رياضية وبرامج محددة، مما يمكنه من جمع ومعالجة المعلومات بالقصور الذاتي بشكل مستقل.MEMS INS: يتوسع بشكل أكبر في MEMS IMU من خلال دمج تحويل الإحداثيات، وعمليات التصفية، والوحدات المساعدة، والتي تشمل عادةً مقاييس المغناطيسية ولوحات استقبال GNSS. تعتبر المستشعرات المساعدة مثل أجهزة قياس المغناطيسية ذات أهمية خاصة في مساعدة محاذاة MEMS INS وتحسين الأداء.تعد نماذج MEMS INS الثلاثة التي تم إطلاقها حديثًا (نظام الملاحة بالقصور الذاتي للنظام الميكانيكي Micro-Magic Inc) من شركة Ericco، والموضحة في الصورة أدناه، مناسبة للتطبيقات في الطائرات بدون طيار، ومسجلات الطيران، والمركبات الذكية بدون طيار، وتحديد المواقع على الطريق والتوجيه، واكتشاف القنوات، المركبات السطحية غير المأهولة، والمركبات تحت الماء.الشكل 2: نماذج Mems Ins الثلاثة التي تم إطلاقها حديثًا من شركة Ericcoكيف تعمل MEMS INS بمساعدة GNSSيوفر نظام GNSS للمستخدمين معلومات مطلقة عالية الدقة عن الموقع والوقت في جميع الأحوال الجوية، بينما توفر أنظمة الملاحة بالقصور الذاتي (INS) دقة عالية على المدى القصير واستقلالية قوية. تعمل خصائصها التكميلية على تعزيز الأداء العام: يمكن لنظام INS الاستفادة من دقته العالية على المدى القصير لتزويد GNSS بمعلومات ملاحية أكثر استمرارية وكاملة، في حين يمكن أن يساعد GNSS في تقدير معلمات خطأ INS مثل التحيز، وبالتالي الحصول على ملاحظات أكثر دقة وتقليل انحراف INS.الشكل 3: ثلاثة مستويات من Mems Insعلى وجه التحديد، تستخدم GNSS إشارات من الأقمار الصناعية التي تدور حولها لحساب الموقع والوقت والسرعة. وطالما أن الهوائي لديه اتصال في خط البصر بأربعة أقمار صناعية على الأقل، فإن الملاحة عبر نظام GNSS تحقق دقة ممتازة. عندما يتم إعاقة رؤية الأقمار الصناعية بسبب عوائق مثل الأشجار أو المباني، تصبح الملاحة غير موثوقة أو مستحيلة.يقوم INS بحساب تغيرات الموضع النسبي مع مرور الوقت باستخدام معلومات المعدل الزاوي والتسارع من وحدة قياس القصور الذاتي (IMU). تتألف وحدة IMU من ستة أجهزة استشعار تكميلية مرتبة على ثلاثة محاور متعامدة. يحتوي كل محور على مقياس تسارع وجيروسكوب. تقيس مقاييس التسارع التسارع الخطي، بينما تقيس الجيروسكوبات معدل الدوران. باستخدام هذه المستشعرات، يمكن لوحدة IMU قياس حركتها النسبية بدقة في الفضاء ثلاثي الأبعاد.يستخدم INS هذه القياسات لحساب الموقع والسرعة. ميزة أخرى لقياسات IMU هي أنها توفر حلولاً زاوية حول المحاور الثلاثة. يقوم INS بتحويل هذه الحلول الزاوية إلى مواقف محلية (التدحرج، والميل، والانعراج)، مما يوفر هذه البيانات جنبًا إلى جنب مع الموقع والسرعة.الشكل 4: نظام إحداثيات الجسم لوحدة القياس بالقصور الذاتيتعد تقنية الحركة الحركية في الوقت الحقيقي (RTK) خوارزمية ناضجة عالية الدقة لتحديد المواقع لنظام GNSS، قادرة على تحقيق دقة على مستوى السنتيمتر في البيئات المفتوحة. ومع ذلك، في البيئات الحضرية المعقدة، تؤدي عوائق الإشارة وتداخلاتها إلى تقليل معدل تثبيت الغموض، مما يؤدي إلى انخفاض القدرة على تحديد المواقع. لذلك، يعد البحث عن أنظمة تحديد المواقع المتكاملة GNSS RTK وINS أمرًا بالغ الأهمية في مجالات مثل الملاحة المستقلة والمسح ورسم الخرائط وتحليل الحركة.I3500 الذي أطلقته شركة Micro-Magic Inc حديثًا هو عبارة عن نظام MEMS INS مدعوم من GNSS فعال من حيث التكلفة مع وحدة MEMS IMU الموثوقة للغاية ووحدة تحديد المواقع ذات النطاق الكامل للنظام الكامل والهوائي المزدوج ووحدة الأقمار الصناعية الاتجاهية. كما أنه يدمج أيضًا مقاييس المغناطيسية والبارومتر، والذي يمكنه حساب حجم زاوية الموقف ومساعدة الطائرة بدون طيار على التنقل إلى الارتفاع المطلوب.خاتمةيؤدي دمج أنظمة الملاحة بالقصور الذاتي MEMS (INS) مع تقنية GNSS إلى تعزيز دقة الملاحة بشكل كبير من خلال الجمع بين نقاط قوتها. إن نظام MEMS INS، مع تقدمه السريع، يستخدم الآن على نطاق واسع في صناعات الطيران والبحرية والسيارات. يوفر نظام GNSS تحديد المواقع بدقة، بينما يضمن نظام MEMS INS التنقل المستمر، حتى أثناء انقطاع نظام GNSS.يمثل I3500 من شركة Micro-Magic Inc هذا التكامل، حيث يقدم بيانات ملاحية عالية الدقة، مثالية للملاحة المستقلة والمسح وتحليل الحركة.باختصار، يُحدث تكامل GNSS وMEMS INS ثورة في الملاحة من خلال تحسين الدقة والموثوقية وتعدد الاستخدامات عبر التطبيقات المختلفة. I3500نظام ملاحة بالقصور الذاتي ثلاثي المحاور Mems Gyro I3500 عالي الدقة  
Subscibe To Newsletter
من فضلك تابع القراءة، ابق على اطلاع، اشترك، ونحن نرحب بك لتخبرنا برأيك.
f y

اترك رسالة

اترك رسالة
إذا كنت مهتما بمنتجاتنا وتريد معرفة المزيد من التفاصيل ، فالرجاء ترك رسالة هنا ، وسوف نقوم بالرد عليك في أقرب وقت ممكن.
إرسال

وطن

منتجات

واتس اب

اتصل بنا